The most comprehensive analysis yet of the epigenetic modifications present in breast cancer that reveals potentially important new ways to detect and treat the disease has been reported by Belgian researchers. Epigenetics is a term used to describe modifications to the DNA molecule that affect way its code is translated into proteins. These changes include methylation, a form of chemical modification.
The researchers performed a comprehensive DNA methylation profile on two independent sets of frozen breast tissue samples: a 'main set' of 123 samples, and a 'validation set' of 125 samples.
Their first finding was two major sub-types of breast cancer, defined according to whether the cancer expresses receptors for estrogen, are widely epigenetically controlled.
"When we performed a clustering analysis of our samples based on their DNA methylation profiles, tumors segregated naturally into two distinct groups," said Dr Sarah Dedeurwaerder, from Universite Libre de Bruxelles, in Brussels.
The first group was mainly composed of estrogen receptor-negative tumors, and the second one of estrogen receptor-positive tumors.
"This indicates that ER-negative and ER-positive tumors have very different methylation profiles," she said.
Advertisement
The analysis also revealed new information about new sub-types of breast cancer. The researchers showed that DNA methylation profiles enabled breast tumors to be classified in more groups than those currently defined.
Advertisement
"Indeed, several patients displaying the same known sub-type of breast cancer can respond differently to a given drug. An epigenetic difference between the tumors of these patients might explain the difference observed in terms of treatment response. Therefore, DNA methylation profiling could help to refine the current breast cancer classification and thus might help to stratify patients within a particular sub-type both in terms of prognosis and prediction to treatment response," she added.
"I think we can harness epigenetic information to improve cancer care in several ways," said Dedeurwaerder.
"Firstly, several lines of evidence suggest that epigenetic dysregulation occurs early during carcinogenesis and can be detected in bodily fluids. Therefore, DNA methylation markers could help to provide an earlier detection of the disease."
"Secondly, it has already been shown that DNA methylation markers might help to better stratify patients in terms of prognosis. Thirdly, such markers could also help to predict response to a given drug."
"Lastly, an epigenetic therapy of cancer, alone or in combination with conventional therapies, is conceivable," added Dedeurwaerder.
The finding has been reported at the IMPAKT Breast Cancer Conference.
Source-ANI