About Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

New Therapy That Prevents Lung Cancer Growth in Mice Identified

by Sheela Philomena on August 15, 2012 at 9:54 AM
Font : A-A+

 New Therapy That Prevents Lung Cancer Growth in Mice Identified

Scientists have identified a molecular pathway that prevents lung cancer growth in mice. This work is published today in the scientific journal Cancer Cell.

Standing up to lung cancer

Advertisement

Notch was identified in 2004 as an important oncogene for the development of leukemias and, since then, intense efforts have been devoted to study the role of Notch in other cancers. At the end of the last decade it was found that Notch is also involved in the development of pancreatic and lung cancer.

In this study, Serrano's team has identified the molecular pathways by which Notch regulates cell proliferation in lung cancer. "We have found that this protein cooperates with the Ras oncogene, a key element in the formation of these tumors", states Serrano.
Advertisement

Researchers have also discovered the therapeutic effect of a specific experimental drug which blocks Notch efficiently, named GSIs (Gamma-Secretase Inhibitors). To this end, scientists used genetically modified mice previously developed by Mariano Barbacid, head of the Experimental Oncoloy Group at the CNIO, that faithfully recapitulate human lung cancer. "After 15 days of treatment, lung tumors failed to grow without treatment-related side effects", says Antonio Maraver, the first author of the study.

Co-clinical trials both in humans and mice

GSIs were developed over 15 years ago to treat Alzheimer's disease. Although now it is well established that GSIs are not useful to stop this neurodegenerative disease, the discovery that these drugs block Notch has stirred the interest in their possible application for cancer. The accumulated knowledge acquired over the years on the pharmacological properties of GSIs has permitted their immediate use in clinical trials for cancer.

Mouse therapeutic trials performed in parallel with humans clinical trials are called coclinical trials, and are at the cutting edge of biomedical research. These trials allow the transference of information from mice to humans in a very short period of time. A clear example is this research, which is being accompanied by a human clinical trial led by Manuel Hidalgo, director of the Clinical Research Program at the CNIO.

"The assays developed by Serrano led us to believe that blocking Notch could be beneficial for treating lung cancer. We have already treated a dozen patients with an agent directed at the blocking of this protein. We are expanding the study, but I can anticipate that the results are very promising", says Hidalgo.

Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
What's New on Medindia
Can Weight Loss be Achieved by Drinking Water?
Can Exercise Counts Boost Your Life Counts? 
Prevent Hacking of Medical Devices: FDA Sounds Alarm
View all
Recommended Reading
News Archive
Date
Category
Advertisement
News Category

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Lung Biopsy Lung Cancer Cancer and Homeopathy Reiki and Pranic Healing Cancer Facts Asbestosis Cancer Tattoos A Body Art Pneumoconiosis Smoking among Women 

Most Popular on Medindia

Find a Hospital Find a Doctor Drug Side Effects Calculator Sanatogen Blood Pressure Calculator Calculate Ideal Weight for Infants Vent Forte (Theophylline) Drug - Food Interactions How to Reduce School Bag Weight - Simple Tips Sinopril (2mg) (Lacidipine)

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2022

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use