Silencing the tumor-shielding cells of the immune system allows T cell attack on tumors and restricts tumor growth. Research findings suggest new targets for cancer immunotherapies.
Some tumors use not one but two levels of protection against the immune system. Knocking out one level boosted the protective effects of the second and vice versa, reveals a new study. // The research demonstrates that a two-pronged approach targeting both cell types simultaneously may offer a promising route for the development of new cancer immunotherapies.
‘Understanding how tumors subvert elements of our immune system suggests new immunotherapy treatments.’
The development and growth of a cancerous tumor often occurs despite a fully functioning immune system, capable of recognizing and killing cancer cells.Tumors hijack certain cells in our immune system to create a growth-permissive environment and give protection from the anti-tumor elements. In particular, tumors recruit immune cell allies, cells called tumor-associated macrophages (TAMs) and regulatory T cells (Treg), to evade immune attack.
Specifically inhibiting the recruitment of TAMs by blocking the actions of a protein called colony-stimulating factor 1 (CSF1) reduces tumor growth in mouse models. Although clinical trials of inhibitors targeting TAMs are underway, results in patients haven't been as effective as hoped.
A lack of understanding of how TAMs promote tumor progression potentially limits the therapeutic value of these inhibitors.
Likewise, inhibiting the action of Treg cells in mice by inactivating a key enzyme called PI3K delta gives protection against a range of tumors. A PI3K delta inhibitor is approved for treatment of chronic lymphocytic leukaemia (CLL) and follicular non-Hodgkin lymphoma (NHL), but the potential for PI3K delta inhibitors for the treatment of solid cancers in humans is yet to be demonstrated.
Advertisement
Dr David Gyori, first author on the paper, said: "Strikingly, preventing tumor immunosuppression by both TAMs and Treg cells caused almost complete tumor rejection by the immune system and half of the mice became completely tumor-free. Taken together, our findings provide a convincing rationale for assessing the clinical value of combinatorial therapies targeting the CSF1 receptor and PI3K delta."
Advertisement
Source-Eurekalert