About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

New Insight into How the Brain Controls Speech Production

by Chrisy Ngilneii on June 4, 2018 at 4:44 PM
Font : A-A+

New Insight into How the Brain Controls Speech Production

Different movements of the tongue, lips, jaw, and larynx to produce different sounds are coordinated in the brain, recent research at the University of California - San Francisco reveals new insight.

The study finds that the brain's speech centers are organized more according to the physical needs of the vocal tract as it produces speech than by how the speech sounds (its "phonetics").

Advertisement


Linguists divide speech into abstract units of sound called "phonemes" and consider the /k/ sound in "keep" the same as the /k/ in "coop." But in reality, your mouth forms the sound differently in these two words to prepare for the different vowels that follow, and this physical distinction now appears to be more important to the brain regions responsible for producing speech than the theoretical sameness of the phoneme.

The findings, which extend previous studies on how the brain interprets the sounds of spoken language, could help guide the creation of new generation of prosthetic devices for those who are unable to speak: brain implants could monitor neural activity related to speech production and rapidly and directly translate those signals into synthetic spoken language.
Advertisement

The new study was conducted by Josh Chartier and Gopala K. Anumanchipalli, PhD, both researchers in the laboratory of senior author Edward Chang, MD, professor of neurological surgery, Bowes Biomedical Investigator, and member of the UCSF Weill Institute for Neurosciences. They were joined by Keith Johnson, PhD, professor of linguistics at UC Berkeley.

A neural code for vocal tract movements
Chang, a neurosurgeon at the UCSF Epilepsy Center, specializes in surgeries to remove brain tissue that causes seizures in patients with epilepsy. In some cases, to prepare for these operations, he places high-density arrays of tiny electrodes onto the surface of the patients' brains, both to help identify the location triggering the patients' seizures and to map out other important areas, such as those involved in language, to make sure the surgery avoids damaging them.

In addition to its clinical importance, this method, known as electrocorticography, or ECoG, is a powerful tool for research. "It's a unique means of looking at thousands of neurons activating in unison," Chartier said.

In the new study, Chartier and Anumanchipalli asked five volunteers awaiting surgery, with ECoG electrodes placed over a region of ventral sensorimotor cortex that is a key center of speech production, to read aloud a collection of 460 natural sentences. The sentences were expressly constructed to encapsulate nearly all the possible articulatory contexts in American English. This comprehensiveness was crucial to capture the complete range of "coarticulation," the blending of phonemes that is essential to natural speech.

"Without coarticulation, our speech would be blocky and segmented to the point where we couldn't really understand it," said Chartier.

The research team was not able to simultaneously record the volunteers' neural activity and their tongue, mouth and larynx movements. Instead, they recorded only audio of the volunteers speaking and developed a novel deep learning algorithm to estimate which movements were made during specific speaking tasks.

This approach allowed the researchers to identify distinct populations of neurons responsible for the specific vocal tract movement patterns needed to produce fluent speech sounds, a level of complexity that had not been seen in previous experiments that used simpler syllable-by-syllable speech tasks.

The experiments revealed that a remarkable diversity of different movements was encoded by neurons surrounding individual electrodes. The researchers found there were four emergent groups of neurons that appeared to be responsible for coordinating movements of muscles of the lips, tongue, and throat into the four main configurations of the vocal tract used in American English. The researchers also identified neural populations associated with specific classes of phonetic phenomena, including separate clusters for consonants and vowels of different types, but their analysis suggested that these phonetic groupings were more of a byproduct of more natural groupings based on different types of muscle movement.

Regarding coarticulation, the researchers discovered that our brains' speech centers coordinate different muscle movement patterns based on the context of what's being said, and the order in which different sounds occur. For example, the jaw opens more to say the word "tap" than to say the word "has" despite having the same vowel sound (/ae/), the mouth has to get ready to close to make the /z/ sound in "has." The researchers found that neurons in the ventral sensorimotor cortex were highly attuned to this and other co-articulatory features of English, suggesting that the brain cells are tuned to produce fluid, context-dependent speech as opposed to reading out discrete speech segments in serial order.

"During speech production, there is clearly another layer of neural processing that happens, which enables the speaker to merge phonemes together into something the listener can understand," said Anumanchipalli.

Path to a Speech Prosthetic
"This study highlights why we need to take into account vocal tract movements and not just linguistic features like phonemes when studying speech production," Chartier said. He thinks that this work paves the way not only for additional studies that tackle the sensorimotor aspect of speech production, but could also pay practical dividends.

"We know now that the sensorimotor cortex encodes vocal tract movements, so we can use that knowledge to decode cortical activity and translate that via a speech prosthetic," said Chartier. "This would give voice to people who can't speak but have intact neural functions."

Ultimately, the study could represent a new research avenue for Chartier and Anumanchipalli's team at UCSF. "It's really made me think twice about how phonemes fit in, in a sense, these units of speech that we pin so much of our research on are just byproducts of a sensorimotor signal," Anumanchipalli said.

The study is published in the journal Neuron.

Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
Memory Loss - Can it be Recovered?
International Day of Persons with Disabilities 2021 - Fighting for Rights in the Post-COVID Era
Effect of Blood Group Type on COVID-19 Risk and Severity
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Parkinsons Disease Parkinsons Disease Surgical Treatment Brain Brain Facts Ataxia Language Areas in The Brain Ways to Improve your Intelligence Quotient (IQ) 

Recommended Reading
Stuttering
Stuttering, stammering or disfluency is a speech disorder that can hamper communication and affect ....
Aphasia
Aphasia is a condition where the patient has a language disorder. The patient has problems with ......
Speech and Language in a Hearing Impaired Child
Language acquisition occurs mostly by hearing and listening. But when there is a problem in the ......
Motherese
Motherese, a special speech and language pattern adopted by people when talking to infants and ......
Ataxia
Ataxia affects coordination. Gait becomes unstable and the patient loses balance. The cerebellum or ...
Language Areas in The Brain
The mechanism of how human brain processes the language to express and comprehend the verbal, writte...
Parkinsons Disease
Parkinson’s disease is a neurodegenerative disease caused by progressive dopamine brain cells loss. ...
Ways to Improve your Intelligence Quotient (IQ)
Intelligence quotient (IQ) is a psychological measure of human intelligence. Regular physical and me...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use