About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Network Remodeling Reveals Molecules Linked To Pulmonary Hypertension

by Dr. Enozia Vakil on June 25, 2014 at 6:15 PM
 Network Remodeling Reveals Molecules Linked To Pulmonary Hypertension

A family of molecules that may play a role in pulmonary hypertension, a deadly vascular disease has now been identified by a team of researchers in a new groundbreaking study. This is one of the first studies to leverage advanced computational network modeling to decipher the molecular secrets of this complex human disease.

The study is published online June 24, 2014 in The Journal of Clinical Investigation.

Advertisement

Despite the rising number of people diagnosed with the disease worldwide, pulmonary hypertension has been a historically neglected disease. It occurs when there is increased pressure in the blood vessels of the lung, thus compromising the delivery of blood and oxygen to the body. Symptoms are debilitating and include shortness of breath and fatigue, but can progress to heart failure and death.

"Pulmonary hypertension is an example of a cardiovascular disease so complex that traditional methods of research have failed to provide adequate treatments to prevent or halt its progression," said Stephen Y. Chan, MD, PhD, BWH Divisions of Cardiovascular Medicine and Network Medicine, senior corresponding author. "We have been advancing the idea that mathematical models of this disease can be generated to perform high-volume, systematic analyses that are not feasible with standard experimentation. In doing so, we can make predictions regarding critical molecular networks that underlie the molecular origins of pulmonary hypertension that have not been possible to this point."
Advertisement

Chan and colleagues have focused on the study of microRNAs, which are small, non-coding nucleic acid molecules that can block production of numerous proteins in human cells with implications in health and disease. With the help of sophisticated computational analyses, the researchers developed a unique molecular model tracing the architecture interconnecting the network of genes and microRNAs associated with pulmonary hypertension.

"Historically, most computational approaches in the study of human disease gene networks go no further than theoretical predictions," said Thomas Bertero, PhD, BWH Division of Cardiovascular Medicine, lead study author. "We wanted to be sure that our predictions were truly valid in real instances of pulmonary hypertension."

Consequently, the researchers confirmed their mathematical predictions with experiments using a wide range of pre-clinical and human models. In doing so, the researchers identified the microRNA family, miR-130/301, as a master regulator of diverse target genes and additional microRNAs, ultimately orchestrating a global proliferative response in diseased blood vessels leading to pulmonary hypertension.

"This is the first microRNA family found to regulate such a diverse number of pathways specific for pulmonary hypertension, and these molecules could be very effective therapeutic targets for treating this deadly disease," said Chan. "Since all of these findings were previously missed by conventional experiments, our efforts also provide great support for using network modeling to discover the molecular origins of other complex human diseases."



Source: Eurekalert
Font : A-A+

Advertisement

Advertisement
Advertisement

Recommended Readings

Latest Research News

Unlocking the Gut Microbiome's Influence on Bone Density
Scientists aim to pinpoint particular functional pathways affected by these bacteria that may have an impact on skeletal health.
Hop-Derived Compound Reduces Gut Microbe Linked to Metabolic Syndrome
Consuming a diet rich in saturated fats triggers persistent, low-level inflammation within the body, ultimately contributing to the onset of metabolic syndrome.
Breakthrough in Mosquitoes for Fighting Dengue Fever
Ae. aegypti mosquitoes are carriers of "arthropod-borne" or "arbo-" viruses, which encompass the dengue virus, yellow fever virus, Zika virus, and chikungunya virus.
Cerebrospinal Fluid Leaks: Link to Traumatic Brain Injury and Dementia?
Cerebrospinal fluid (CSF) leaks are detected in approximately 1-3% of adults who have experienced a traumatic brain injury.
Astrocyte Activation Through Optogenetics: A New Hope in the Fight Against Alzheimer's
The optogenetic activation of hippocampal astrocytes can be viewed as a novel therapeutic avenue for addressing Alzheimer's disease.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
MediBotMediBot
Greetings! How can I assist you?MediBot
×

Network Remodeling Reveals Molecules Linked To Pulmonary Hypertension Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests