About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Molecule Responsible for Axonal Branching Discovered

by Rajashri on September 22, 2009 at 8:14 PM
 Molecule Responsible for Axonal Branching Discovered

A crucial mechanism for the generation of about 100 trillion (1014) synaptic connections with each other in the brain is the formation of neuronal branches.

The neurobiologists Dr. Hannes Schmidt and Professor Fritz G. Rathjen at the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany, have now discovered a molecule that regulates this vital process. At the same time they have succeeded in elucidating the signaling cascade induced by this molecule (PNAS, Early Edition, 2009, doi:10.1073)*.

Advertisement

Through the ramification of its fiber-like axon, a single neuron can send branches and thus transmit information into several target areas at the same time. In principle, neurobiologists distinguish between two kinds of axonal branching: branching of the growth cone at the tip of an axon and the sprouting of collaterals (interstitial branching) from the axon shaft.

Both forms of axonal branching can be observed in sensory neurons, which transmit the sensation of touch, pain and temperature, among others. When the axons of these neurons reach the spinal cord, their growth cones first split (bifurcate) and consequently the axons divide into two branches growing in opposite directions. Later new branches sprout from the shaft of these daughter axons which penetrate the gray matter of the spinal cord.
Advertisement

Through investigations on sensory neurons, Dr. Hannes Schmidt and his colleagues were able to identify a protein which triggers the splitting of the growth cone of the sensory axons: the peptide CNP (the abbreviation stands for C-type natriuretic peptide). In transgenic mice the scientists were able to show that CNP is formed in the spinal cord precisely when sensory neurons grow into it. In the absence of CNP bifurcation can no longer occur which results in reduced neuronal connectivity in the spinal cord.

The new findings supplement earlier discoveries of the research group of Professor Rathjen according to which a cGMP-signaling cascade is responsible for the bifurcation of sensory axons. When CNP binds to its receptor Npr2 (natriuretic peptide receptor 2) on the surface of the axons, this signaling cascade is set in motion, which in turn induces the formation of the secondary messenger molecule cGMP. This messenger molecule then activates the protein kinase cGKI (cGMP-dependent protein kinase I), which can switch on and off a whole series of target proteins. The cytoskeleton of the neurons is thus altered in such a way that their growth cone splits into two daughter axons.

Next, the researchers want to identify these target proteins. Further analyses should clarify whether the cGMP signaling cascade likewise regulates the branching of other axon systems and whether this impacts the sensation of pain.



Source: Eurekalert
RAS
Font : A-A+

Advertisement

Advertisement
Advertisement

Latest Research News

Brain Circuits That Shape Bedtime Rituals in Mice
New study sheds light on the intrinsic, yet often overlooked, role of sleep preparation as a hardwired survival strategy.
NELL-1 Protein Aids to Reduce Bone Loss in Astronauts
Microgravity-induced bone loss in space, can be reduced by systemic delivery of NELL-1, a protein required for bone growth and its maintenance.
Connecting Genetic Variants to the Alzheimer's Puzzle
Researchers establish connections between Alzheimer's-linked genetic alterations and the functioning of brain cells.
Gene Therapy Sparks Spinal Cord Regeneration
Team at NeuroRestore introduces a groundbreaking gene therapy that has effectively promoted nerve regrowth and reconnection, post spinal cord injury.
Unlocking the Gut Microbiome's Influence on Bone Density
Scientists aim to pinpoint particular functional pathways affected by these bacteria that may have an impact on skeletal health.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
MediBotMediBot
Greetings! How can I assist you?MediBot
×

Molecule Responsible for Axonal Branching Discovered Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests