Medindia LOGIN REGISTER
Medindia
Advertisement

Molecular Pathology of Giant Axonal Neuropathy Demystified

by Kathy Jones on April 19, 2013 at 9:00 PM
 Molecular Pathology of Giant Axonal Neuropathy Demystified

One of the rare genetic disorders, giant axonal neuropathy (GAN) causes central and peripheral nervous system dysfunction.

GAN is known to be caused by mutations in the gigaxonin gene and is characterized by tangling and aggregation of neural projections, but the mechanistic link between the genetic mutation and the effects on neurons is unclear. In this issue of the Journal of Clinical Investigation, Robert Goldman and colleagues at Northwestern University uncover how mutations in gigaxonin contribute to neural aggregation. They demonstrated that gigaxonin regulates the degradation of neurofilament proteins, which help to guide outgrowth and morphology of neural projections. Loss of gigaxonin in either GAN patient cells or transgenic mice increased levels of neurofilament proteins, causing tangling and aggregation of neural projections. Importantly, expression of gigaxonin allowed for clearance of neurofilament proteins in neurons. These findings demonstrate that mutations in gigaxonin cause accumulation of neurofilament proteins and shed light on the molecular pathology of GAN.

Advertisement


Source: Eurekalert

Font : A-A+

Advertisement

Advertisement
Advertisement

Recommended Readings

Latest Research News

New Immunotherapy for Psoriasis & Vitiligo
Scientists identified mechanisms governing immune cells, selectively removing troublemakers to reshape skin immunity. Benefits those with psoriasis, vitiligo.
2050 Forecast: 1.06 Billion Individuals to Face 'Other' Musculoskeletal Disorders
By 2050, an anticipated increase from 494 million cases in 2020 to 1.06 billion people with musculoskeletal disabilities is expected.
Gene Therapies Can Disrupt Gaucher Disease Drug Market
Experts consulted by GlobalData anticipate a significant overhaul in the Gaucher disease scenario because of forthcoming gene therapies in development.
NASH Cases Expected to Hit 26.55 Million in 7MM by 2032
Within the seven major markets, 12% to 20% of diagnosed prevalent NASH cases present severe liver damage (stage 4 liver fibrosis), denoting cirrhosis.
Can Sleep Brain Waves Defend Against Epileptic Activity?
Memory deficits in individuals with epilepsy, especially cognitive difficulties, might partially stem from the transient impairments caused by these slow waves.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Molecular Pathology of Giant Axonal Neuropathy Demystified Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests