About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Lipids Play Important Role in Heart Diseases, Hepatitis and Genetic Disorders

by Anjali Aryamvally on February 11, 2018 at 4:51 PM
Lipids Play Important Role in Heart Diseases, Hepatitis and Genetic Disorders

The role of cholesterol and other lipids in the blood in cardiovascular disease, hepatitis, and rare genetic disorders was investigated in recent articles published in the Journal of Lipid Research. While lipids are crucial in cell signaling and storage, having an excess of some lipids, like cholesterol, is a risk factor for many metabolic diseases.

The cholesterol connection to rare muscle-wasting disorders

Advertisement


Rare inherited mutations in the DYSF gene cause deficiencies in the protein dysferlin, resulting in debilitating limb-girdle muscular dystrophy type 2b. To date, there are no approved therapies for dysferlinopathies. Drug development has been slowed, in part, by the lack of animal models that closely mimic human symptoms. A new paper in the Journal of Lipid Research, however, reports the creation of a mouse that comes closer than its predecessors and contemporaries. A research team led by Pascal N. Bernatchez at the University of British Columbia in Canada set out to create the new mouse model after observing that elevated so-called "bad" cholesterol levels correlate with disease severity in some muscular dystrophy patients. While mice with the DYSF gene knocked out display muscle degradation, they usually don't lose the ability to walk like human patients do. Bernatchez's team knocked out both the DYSF gene and the apolipoprotein E gene in their mice. Loss of apolipoprotein E function increases bad cholesterol. The team's double-knockout mice developed more dramatic muscle wasting than mice with only DYSF knocked out and eventually were unable to walk. The researchers are hopeful that their new model will help scientists better understand the human disease. Importantly, the researchers wrote, though it's unclear at this stage precisely how bad cholesterol exacerbates muscle damage, their model revealed "a striking correlation" that deserves further investigation. The work was supported by the Jain Foundation.

Alcohol consumption plus hepatitis B raises cholesterol in mice

Though a safe and effective vaccine for hepatitis B is available and used worldwide, the World Health Organization estimates that still some 257 million people are living with the viral infection. The virus is treatable but still causes liver scarring and in some cases liver cancer. Intravenous drug users who share needles are especially at risk of infection and are likely to abuse multiple substances, including alcohol, which causes liver damage as well. Given that damage to the liver affects how the organ creates and clears cholesterol and given that studies have found that hepatitis B alone and alcohol alone affect cholesterol homeostasis, a research team led by Qin Ning at Tongji Hospotal at Huazhong University of Science and Technology in Wuhan China wanted to learn more about the combined effects of hepatitis B and alcohol consumption on cholesterol deposition in the liver. In a new paper in the Journal of Lipid Research, the team reports that the virus and alcohol have a "synergistic effect" on cholesterol metabolism. That is to say that the combination increases cholesterol biosynthesis, decreases cholesterol utilization and impairs cholesterol uptake. To figure this out, the team created a mouse model with chronic hepatitis B and administered it ethanol. This resulted in increased cholesterol accumulation in the liver. Later experiments, using only cells, produced results that the researchers say indicate it is the HBc protein specifically that activates cholesterol biosynthesis and inhibits cholesterol degradation in the presence of alcohol.
Advertisement

Bacterial lipids lurk in healthy arteries

Perhaps you have heard that brushing your teeth can be good for your heart. Bacteria of the Bacteroidetes phylum may be the main culprits behind the association between gum disease and atherosclerosis, the accumulation of plaque in the arteries that can lead to heart attack or stroke. In a recent paper in the Journal of Lipid Research, researchers from the University of Connecticut reported on their investigation into how Bacteriodetes in the mouth and gut may contribute to the development of atherosclerosis. They found deposits of a lipid made by these bacteria in the wall of healthy carotid arteries. A human enzyme can convert the bacterial lipid into a closely related molecule that is known to trigger inflammation. Patients with atherosclerosis, who were undergoing surgery to reduce the risk of stroke, had much more of the modified, inflammation-associated molecule than the original lipid. The study's senior author, Frank Nichols, told ASBMB that "Many think that atherosclerosis is caused by eating fatty foods, but it is now apparent that other lipids produced by oral and intestinal bacteria accumulate in diseased arteries." It remains to be determined whether accumulation of the original lipid and conversion to the inflammatory molecule can cause heart disease, or are a side effect.



Source: Eurekalert
Font : A-A+

Advertisement

Advertisement
Advertisement

Recommended Readings

Latest Research News

Breakthrough Brain-Centered Approach Reduces Chronic Back Pain
Our discovery revealed that a minority of individuals attributed their chronic pain to their brain's involvement.
New Statement to Protect Athletes' Health Published
Relative Energy Deficiency in Sport syndrome is overlooked by athletes and can be worsened by 'sports culture' due to its perceived short-term performance benefits.
Brain Circuits That Shape Bedtime Rituals in Mice
New study sheds light on the intrinsic, yet often overlooked, role of sleep preparation as a hardwired survival strategy.
NELL-1 Protein Aids to Reduce Bone Loss in Astronauts
Microgravity-induced bone loss in space, can be reduced by systemic delivery of NELL-1, a protein required for bone growth and its maintenance.
Connecting Genetic Variants to the Alzheimer's Puzzle
Researchers establish connections between Alzheimer's-linked genetic alterations and the functioning of brain cells.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
MediBotMediBot
Greetings! How can I assist you?MediBot
×

Lipids Play Important Role in Heart Diseases, Hepatitis and Genetic Disorders Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests