About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

John Hopkins Researchers: Switching Off Gene Makes Cancer Less Aggressive

by Rukmani Krishna on May 7, 2013 at 11:43 PM
Font : A-A+

 John Hopkins Researchers: Switching Off Gene Makes Cancer Less Aggressive

A gene that, when repressed in tumor cells, puts a halt to cell growth and a range of processes needed for tumors to enlarge and spread to distant sites, was identified by Johns Hopkins researchers.

The researchers hope that this so-called "master regulator" gene may be the key to developing a new treatment for tumors resistant to current drugs.

Advertisement

"This master regulator is normally turned off in adult cells, but it is very active during embryonic development and in all highly aggressive tumors studied to date," said Linda Resar, M.D., an associate professor of medicine, oncology and pediatrics, and affiliate in the Institute for Cell Engineering at the Johns Hopkins University School of Medicine.

"Our work shows for the first time that switching this gene off in aggressive cancer cells dramatically changes their appearance and behavior," she asserted.
Advertisement

Resar has been investigating genes in the master regulator's family, known as high mobility group or HMG genes, for two decades. In addition to their role in cancer, these genes are essential for giving stem cells their special powers, and that's no coincidence, she said.

In a previous study, she and her team devised techniques to block the HMGA1 gene in stem cells in order to study its role in those cells. In their prior work, they discovered that HMGA1 is essential for reprogramming adult cells, like blood or skin cells, into stem cells that share most, if not all, properties of embryonic stem cells.

In the newly reported study, the Resar team applied the same techniques to several strains of human breast cancer cells in the laboratory, including the so-called triple negative cells - those that lack hormone receptors or HER2 gene amplification.

Triple-negative breast cancer cells tend to behave aggressively and do not respond to many of our most effective breast cancer therapies. The Resar team blocked HMGA1 expression in aggressive breast cancer cells and followed their appearance and growth patterns.

"The aggressive breast cancer cells grow rapidly and normally appear spindle-shaped or thin and elongated. Remarkably, within a few days of blocking HMGA1 expression, they appeared rounder and much more like normal breast cells growing in culture," said Resar.

The team also found that the cells with suppressed HMGA1 grow very slowly and fail to migrate or invade new territory like their HMGA1-expressing cousins.

The team next implanted tumor cells into mice to see how the cells would behave. The tumors with HMGA1 grew and spread to other areas, such as the lungs, while those with blocked HMGA1 did not grow well in the breast tissue or spread to distant sites.

"From previous work, we know that HMGA1 turns on many different genes needed during very early development, but it's normally turned off by the time we're born," said postdoctoral fellow Sandeep Shah, Ph.D., who led the study.

"Flipping that master regulator back on seems to be necessary for a cancer to become highly aggressive, and now we've seen that flipping HMGA1 off again can reverse that aggressive behavior," he added.

The next step, Resar said, is to try to develop a therapy based on that principle.

A description of the experiments appeared in the journal PLOS ONE.

Source: ANI
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
International Day of Persons with Disabilities 2021 - Fighting for Rights in the Post-COVID Era
Effect of Blood Group Type on COVID-19 Risk and Severity
Woman with Rare Spinal Cord Defect from Birth Sues Doctor
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
DNA Finger Printing Cancer and Homeopathy Cancer Facts Cancer Tattoos A Body Art Weaver Syndrome Common Lifestyle Habits that Cause Diseases Health Benefits of Dandelion Plant Immune Checkpoint Inhibitors for Cancer Treatment Non-Communicable Diseases 

Recommended Reading
US Supreme Court to Rule on the Most High Profile Genetics Case in History
The US Supreme Court judges are currently hearing the most high profile genetics case in history....
Common Lifestyle Habits that Cause Diseases
Cigarette smoking, unhealthy diets, overuse of alcohol, and physical inactivity are some of the most...
DNA Finger Printing
DNA fingerprinting is a technique which helps forensic scientists and legal experts solve crimes, id...
Health Benefits of Dandelion Plant
What is dandelion? Dandelion greens are nutrition powerhouses with a wide range of health benefits. ...
Immune Checkpoint Inhibitors for Cancer Treatment
Immune checkpoint inhibitors are promising drugs to treat a variety of cancers and the FDA has appro...
Non-Communicable Diseases
Non-Communicable Diseases (NCDs) are a group of chronic non-infectious diseases which include Cardio...
Tattoos A Body Art
Tattoos are a rage among college students who sport it for the ‘cool dude’ or ‘cool babe’ look...
Weaver Syndrome
Weaver syndrome is a genetic disorder in which children show accelerated bone growth, advanced bone ...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use