About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Important Mechanism Underlying Alzheimer's Disease, Discovered

by Dr. Enozia Vakil on September 7, 2013 at 4:58 PM
Font : A-A+

 Important Mechanism Underlying Alzheimer's Disease, Discovered

Alzheimer's disease is believed to affect around 26 million people worldwide. It is predicted to skyrocket as boomers age—nearly 106 million people are projected to have the disease by 2050. Fortunately, scientists are making progress towards therapies. A collaboration among several research entities, including the Salk Institute and the Sanford-Burnham Medical Research Institute, has defined a key mechanism behind the disease's progress, giving hope that a newly modified Alzheimer's drug will be effective.

In a previous study in 2009, Stephen F. Heinemann, a professor in Salk's Molecular Neurobiology Laboratory, found that a nicotinic receptor called Alpha7 may help trigger Alzheimer's disease. "Previous studies exposed a possible interaction between Alpha-7 nicotinic receptors (α7Rs) with amyloid beta, the toxic protein found in the disease's hallmark plaques," says Gustavo Dziewczapolski, a staff researcher in Heinemann's lab. "We showed for the first time, in vivo, that the binding of this two proteins, α7Rs and amyloid beta, provoke detrimental effects in mice similar to the symptoms observed in Alzheimer's disease ."

Advertisement

Their experiments, published in The Journal of Neuroscience, with Dziewczapolski as first author, consisted in testing Alzheimer's disease-induced mice with and without the gene for α7Rs. They found that while both types of mice developed plaques, only the ones with α7Rs showed the impairments associated with Alzheimer's.

But that still left a key question: Why was the pairing deleterious?

In a recent paper in the Proceedings of the National Academy of Sciences, Heinemann and Dziewczapolski here at Salk with Juan Piña-Crespo, Sara Sanz-Blasco, Stuart A. Lipton of the Sanford-Burnham Medical Research Institute and their collaborators announced they had found the answer in unexpected interactions among neurons and other brain cells.
Advertisement

Neurons communicate by sending electrical and chemical signals to each other across gaps called synapses. The biochemical mix at synapses resembles a major airport on a holiday weekend—it's crowded, complicated and exquisitely sensitive to increases and decreases in traffic. One of these signaling chemicals is glutamate, an excitatory neurotransmitter, which is essential for learning and storing memories. In the right balance, glutamate is part of the normal functioning of neuronal synapses. But neurons are not the only cells in the brain capable of releasing glutamate. Astrocytes, once thought to be merely cellular glue between neurons, also release this neurotransmitter.

In this new understanding of Alzheimer's disease, there is a cellular signaling cascade, in which amyloid beta stimulates the alpha 7 nicotine receptors, which trigger astrocytes to release additional glutamate into the synapse, overwhelming it with excitatory ("go") signals.

This release in turn activates another set of receptors outside of the synapse, called extrasynaptic-N-methyl-D-aspartate receptors (eNMDARs) that depress synaptic activity. Unfortunately, the eNMDARs seem to overly depress synaptic function, leading to the memory loss and confusion associated with Alzheimer's.

Now that the team has finally determined the steps in this destructive pathway, the good news is that a drug developed by the Lipton's Laboratory called NitroMemantine, a modification of the earlier Alzheimer's medication, Memantine, may block the entry of eNMDARs into the cascade.

"Thanks to the joint effort of our colleagues and collaborators, we seem to finally have a clear mechanistic link between a key target of the amyloid beta in the brain, the Alpha7 nicotinic receptors, triggering downstream harmful effects associated with the initiation and progression of Alzheimer's disease," says Dziewczapolski. "This is a clear demonstration of the value of basic biomedical research. Drug development cannot proceed without knowing the details of interactions at the molecular and cellular level. Our research revealed two potential targets, α7Rs and eNMDARs, for future disease-modifying therapeutics, which Dr. Heinemann and I both hope will translate in a better treatment for Alzheimer's patients."



Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
Fermented Skin Care
Television Binge-Watching May Boost the Risk of Deadly Blood Clots
Western Diet may Augment the Risk of Autoimmune Diseases
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Alzheimers Disease Diet and Alzheimer´s Disease Genetics of Alzheimer´s disease 

Recommended Reading
Alzheimers Disease
Alzheimer's disease is a progressive neurodegenerative disease affecting memory and thinking and ......
Early Alzheimers in Drivers may Prove Potentially Dangerous
Researchers at Rhode Island Hospital and Brown University have revealed that people with early ......
Diet and Alzheimer´s Disease
Alzheimer''s begins with forgetfulness, but over time affects speech and coordination along with dra...
Genetics of Alzheimer´s disease
There are numerous genes that have been discovered that are associated with Alzheimer’s disease and ...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2022

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use
open close
ASK A DOCTOR ONLINE
I have read and I do accept terms of use - Telemedicine

Advantage Medindia: FREE subscription for 'Personalised Health & Wellness website with consultation' (Value Rs.300/-)