About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Human Neural Stem Cells And Critical Limb Ischemia

by Rukmani Krishna on November 26, 2013 at 1:48 AM
Font : A-A+

 Human Neural Stem Cells And Critical Limb Ischemia

Human neural stem cells could improve blood flow in critical limb ischemia through the growth of new vessels, reveals new research. Critical limb ischemia (CLI) is a disease that severely obstructs arteries and reduces the blood flow to legs and feet. CLI remains an unmet clinical problem and with an ageing population and the rise in type II diabetes, the incidence of CLI is expected to increase.

The study, led by academics in the University of Bristol's School of Clinical Sciences, is published online in the American Heart Association journal Arteriosclerosis, Thrombosis, and Vascular Biology.

Advertisement

Current stem cell therapy trials for the treatment of CLI have revitalised new hope for improving symptoms and prolonging life expectancy. However, there are limitations on the use of autologous cell therapy. The patient's own stem cells are generally invasively harvested from bone marrow or require purification from peripheral blood after cytokine stimulation. Other sources contain so few stem cells that ex vivo expansion through lengthy bespoke Good Manufacturing Practice processes is required. Ultimately, these approaches lead to cells of variable quality and potency that are affected by the patient's age and disease status and lead to inconsistent therapeutic outcomes.

In order to circumvent the problem a team, led by Professor Paolo Madeddu in the Bristol Heart Institute at the University of Bristol, has used a conditionally immortalised clonal human neural stem cell (hNSC) line to treat animal models with limb ischaemia and superimposed diabetes. The CTX cell line, established by stem cell company ReNeuron, is genetically modified to produce genetically and phenotypically stable cell banks.
Advertisement

Results of the new study have shown that CTX treatment effectively improves the recovery from ischaemia through the promotion of the growth of new vessels. The safety of CTX cell treatment is currently being assessed in disabled patients with stroke [PISCES trial, NCT01151124]. As a result, the same cell product is immediately available for starting dose ranging safety and efficacy studies in CLI patients.

Professor Paolo Madeddu, Chair of Experimental Cardiovascular Medicine and Head of Regenerative Medicine Section in the Bristol Heart Institute at the University of Bristol, said: "Currently, there are no effective drug interventions to treat CLI. The consequences are a very poor quality of life, possible major amputation and a life expectancy of less than one year from diagnosis in 50 per cent of all CLI patients.

"Our findings have shown a remarkable advancement towards more effective treatments for CLI and we have also demonstrated the importance of collaborations between universities and industry that can have a social and medical impact."

Dr John Sinden, Chief Scientific Officer of ReNeuron, added: "The novel idea of using neural stem cells to treat vascular disease arose from a chance discussion with Professor Madeddu. The discussion led to a short pilot study with our cells producing very clear data, which then developed into a further eight experiments exploring different variants of the disease model, the product formulation and dose variation.

"The study also explored the cascade of molecular events that produced vascular and muscle recovery. It is a great example of industry and academia working successfully towards the key goal, clinical translation."

Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
News Category
What's New on Medindia
Printed Temperature Sensors help with Continuous Temperature Monitoring
Health Benefits of Giloy
Breast Cancer Awareness Month 2021 - It's time to RISE
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Stem Cells - Cord Blood Stem Cells - Fundamentals Parkinsons Disease Surgical Treatment Genetics and Stem Cells Orthotics Bone Marrow Transplantation Tissue Engineering and Regenerative Medicine Stem Cells Stem Cell Therapy 

Recommended Reading
Artificial Skin Grown from Umbilical Cord Stem Cells
Artificially-grown skin for major burn patients has been created by scientists....
Mechanism That Makes Ordinary Stem Cells Create Tumors Identified
The way in which changes in cell signaling can cause ordinary stem cells in the jaw to start ......
Bone Marrow Transplantation
Preferred Term is Hematopoietic stem cell transplantation. In this stem cell from bone marrow are in...
Orthotics
Orthotics is concerned using artificial supports or braces. Orthoses play an integral role in the re...
Stem Cell Therapy
Stem cell therapy or regenerative medicine uses undifferentiated cells for the treatment of conditio...
Stem Cells - Fundamentals
Encyclopedia section of medindia gives general info about Stem Cells...
Stem Cells - Cord Blood
Encyclopedia section of medindia gives general info about Cord Blood...
Tissue Engineering and Regenerative Medicine
This new field is an amalgamation of biology, medicine and engineering, and is believed to have mind...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use