About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Hematopoietic Stem Cells Reverse Cell Damage in Neuro-muscular Disease

by Anjali Aryamvally on October 27, 2017 at 11:07 AM
Font : A-A+

Hematopoietic Stem Cells Reverse Cell Damage in Neuro-muscular Disease

Single infusion of wildtype hematopoietic stem and progenitor cells (HSPCs) into a mouse model with a neuromuscular degenerative disease called Friedreich's ataxia (FA) halted cellular damage, says study. The study was conducted at the University of California San Diego School of Medicine and published in Science Translational Medicine .

Friedreich's ataxia is an inherited, degenerative neuromuscular disorder that initially impairs motor function, such as gait and coordination, but can lead to scoliosis, heart disease, vision loss and diabetes. Cognitive function is not affected. The disease is progressively debilitating, and ultimately requires full-time use of a wheelchair. One in 50,000 Americans has FA.

Advertisement


FA is caused by reduced expression of a mitochondrial protein called frataxin (FXN) due to a two mutated or abnormal copies of the FXN gene. In their study, Stephanie Cherqui, PhD, associate professor in the UC San Diego School of Medicine Department of Pediatrics, and colleagues used a transgenic mouse model that expresses two mutant human FXN transgenes, and exhibits the resulting progressive neurological degeneration and muscle weakness.

Human hematopoietic stem and progenitor cells (HSPCs), derived from bone marrow, have become a primary vehicle for efforts to replace or regenerate cells destroyed by a variety of diseases. Previous research by Cherqui and colleagues had shown that transplanting wildtype or normal mouse HSPCs resulted in long-term kidney, eye and thyroid preservation in a mouse model of cystinosis, another genetic disorder.
Advertisement

In this study, Cherqui's team transplanted wildtype HSPCs into an FA mouse model, reporting that the HSPCs engrafted and soon differentiated into macrophages in key regions of the mice's brain and spinal cord where they appeared to transfer wildtype FXN into deficient neurons and muscle cells.

"Transplantation of wildtype mouse HSPCs essentially rescued FA-impacted cells," said Cherqui, "Frataxin expression was restored. Mitochondrial function in the brains of the transgenic mice normalized, as did in the heart. There was also decreased skeletal muscle atrophy."

The scientists note that the mouse model is not perfect mirror of human FA. Disease progression is somewhat different and the precise pathology in mice is not fully known. However, Cherqui said the findings are encouraging and point toward a potential treatment for a disease that currently has none.



Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
Top 7 Benefits of Good Oral Hygiene
Healthy and Safer Thanksgiving 2021
Long-Term Glycemic Control - A Better Measure of COVID-19 Severity
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Stem Cells - Cord Blood Stem Cells - Fundamentals Parkinsons Disease Surgical Treatment Genetics and Stem Cells Bone Marrow Transplantation Tissue Engineering and Regenerative Medicine Stem Cells Stem Cell Therapy Oxidative Stress / Free Radicals Cell Injury 

Recommended Reading
Hematopoietic Stem Cell Transplant For STAT1 Gene Mutation - Promising But Risky
First ever study to assess response to stem cell transplant in STAT1 mutation suggests that it is .....
Self-Renewing Hematopoietic Stem Cells: Major Game-changer In Blood Disorder Therapy
Generation of self-renewing hematopoietic stem cells (HSC) is a major stride ahead in offering a ......
Bone Marrow Aging Linked to Aging of Blood Cell Forming Stem Cells
Aging of the section of the bone marrow where hematopoietic stem cells are formed are found to ......
Algorithm That Predicts the Hematopoietic Stem Cell's Decision in Advance
Today, cell biology is no longer limited to static states but also attempts to understand the ......
Bone Marrow Transplantation
Preferred Term is Hematopoietic stem cell transplantation. In this stem cell from bone marrow are in...
Oxidative Stress / Free Radicals Cell Injury
Oxidative stress is a form of injury to body tissues due to increase in free radicals. If the injur...
Stem Cell Therapy
Stem cell therapy or regenerative medicine uses undifferentiated cells for the treatment of conditio...
Stem Cells - Fundamentals
Encyclopedia section of medindia gives general info about Stem Cells...
Stem Cells - Cord Blood
Encyclopedia section of medindia gives general info about Cord Blood...
Tissue Engineering and Regenerative Medicine
This new field is an amalgamation of biology, medicine and engineering, and is believed to have mind...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use