About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

'good Mothering' Hardwires Infant Brain

by Dr. Enozia Vakil on July 18, 2014 at 6:39 PM
Font : A-A+

 'good Mothering' Hardwires Infant Brain

Researchers observed videos showing mother rats protecting their pups and matched them to their brain's electrical readings, and found how mother plays a key role in growth of the baby's brain.

Reporting in the July 21 edition of the journal Current Biology, the NYU Langone team showed that the mother's presence in the nest regulated and controlled electrical signaling in the infant pup's brain.

Advertisement

Although scientists have known for decades that maternal-infant bonding affects neural development, the NYU Langone team's latest findings are believed to be the first to show — as it is happening — how such natural, early maternal attachment behaviors, including nesting, nursing, and grooming of pups, impact key stages in postnatal brain development.

Researchers say the so-called slow-wave, neural signaling patterns seen during the initial phases of mammalian brain development — between age 12 and 20 days in rats — closely resembled the electrical patterns seen in humans for meditation and conscious and unconscious sleep-wake cycles, and during highly focused attention. These early stages are when permanent neural communication pathways are known to form in the infant brain, and when increasing numbers of nerve axons become sheathed, or myelinated, to speed neural signaling.
Advertisement

According to senior study investigator and neurobiologist Regina Sullivan, PhD, whose previous research in animals showed how maternal interactions influenced gene activity in the infant brain, the latest study offers an even more profound perspective on maternal caregiving.

"Our research shows how in mammals the mother's sensory stimulation helps sculpt and mold the infant's growing brain and helps define the role played by 'nurturing' in healthy brain development, and offers overall greater insight into what constitutes good mothering," says Sullivan, a professor at the NYU School of Medicine and its affiliated Nathan S. Kline Institute for Psychiatric Research. "The study also helps explain how differences in the way mothers nurture their young could account, in part, for the wide variation in infant behavior among animals, including people, with similar backgrounds, or in uniform, tightly knit cultures."

"There are so many factors that go into rearing children," says lead study investigator Emma Sarro, PhD, a postdoctoral research fellow at NYU Langone. "Our findings will help scientists and clinicians better understand the whole-brain implications of quality interactions and bonding between mothers and infants so closely after birth, and how these biological attachment behaviors frame the brain's hard wiring."

For the study, a half-dozen rat mothers and their litters, of usually a dozen pups, were watched and videotaped from infancy for preset times during the day as they naturally developed. One pup from each litter was outfitted with a miniature wireless transmitter, invisibly placed under the skin and next to the brain to record its electrical patterns.

Specifically, study results showed that when rat mothers left their pups alone in the nest, infant cortical brain electrical activity, measured as local field potentials, jumped 50 percent to 100 percent, and brain wave patterns became more erratic, or desynchronous. Researchers point out that such periodic desynchronization is key to healthy brain growth and communication across different brain regions.

During nursing, infant rat pups calmed down after attaching themselves to their mother's nipple. Brain activity also slowed and became more synchronous, with clearly identifiable electrical patterns. Slow-wave infant brain activity increased by 30 percent, while readings of higher brain-wave frequencies decreased by 30 percent. Milk delivery led to intermittent bursts of electrical brain activity that were double or five times higher than before.

Similar spikes in rat brain activity of more than 100 percent were observed when mothers naturally groomed their infant pups.

However, these brain surges progressively declined during weaning, as infant pups gained independence from their mothers, leaving the nest and seeking food on their own as they grew past two weeks of age.

Additional experiments with a neural-signaling blocking agent, propranolol, confirmed that maternal effects were controlled in part by secretion of norepinephrine, a key neurotransmitter and hormone involved in most basic brain and body functions, including regulation of heart rate and cognition. Noradrenergic blocking in infant rats mostly dampened all previously observed effects induced by their mothers.

Sullivan says her team next plans similar experiments to look at how behavioral variations by the mother affect infant rat brain development, with the added goal of mapping any differences in brain development. Long term, they say, they hope to develop diagnostic tools and therapies for people whose brains may have been impaired or simply underdeveloped during infancy.

Sarro says more research is also under way to investigate what other, nonadrenergic biological mechanisms might also be involved in controlling maternal sensory stimulation of the infant brain.



Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
News Category
What's New on Medindia
Contraceptive Pills in Polycystic Ovary Syndrome (PCOS) Curtail Type 2 Diabetes Risk
Mushroom May Help Cut Down the Odds of Developing Depression
How to Battle Boredom during COVID
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Parkinsons Disease Parkinsons Disease Surgical Treatment Brain Brain Facts Ataxia 

Recommended Reading
Curry Spices Lower Hypertension in Rats, Say Researchers
In rats, curry spices were found to lower blood pressure, say Indian medical researchers....
Now, Research Demonstrates Rats too can Show Regret
In a surprising finding, researchers have demonstrated that rats too show regret....
Ataxia
Ataxia affects coordination. Gait becomes unstable and the patient loses balance. The cerebellum or ...
Parkinsons Disease
Parkinson’s disease is a neurodegenerative disease caused by progressive dopamine brain cells loss. ...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use