About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Delayed but Normal Pattern in ADHD Brain Maturation

by Medindia Content Team on November 19, 2007 at 8:09 PM
Font : A-A+

Delayed but Normal Pattern in ADHD Brain Maturation

The researchers at the National Institutes of Health's (NIH) National Institute of Mental Health (NIMH), have found that in youth with Attention Deficit Hyperactivity Disorder (ADHD) the maturation of the brain is delayed by three years when compared to normal youth.

Though maturation occurs in a normal pattern, a delay in the development at the front of the brain's outer mantle (cortex) was prominent in patients with ADHD. The cortex is important for the ability to control thinking, attention and planning. Apart from this, both the groups showed similar back-to-front wave of brain maturation with different areas peaking in thickness at different times.

Advertisement

"Finding a normal pattern of cortex maturation, albeit delayed, in children with ADHD should be reassuring to families and could help to explain why many youth eventually seem to grow out of the disorder," explained Philip Shaw, M.D., NIMH Child Psychiatry Branch, who led research team.

Previous brain imaging studies failed to detect the developmental lag because they focused on the size of the relatively large lobes of the brain. The sharp differences emerged only after a new image analysis technique allowed the researchers to pinpoint the thickening and thinning of thousands of cortex sites in hundreds of children and teens, with and without the disorder.
Advertisement

"If you're just looking at the lobes, you have only four measures instead of 40,000," explained Shaw. "You don't pick up the focal, regional changes where this delay is most marked." Among 223 youth with ADHD, half of 40,000 cortex sites attained peak thickness at an average age of 10.5, compared to age 7.5 in a matched group of youth without the disorder.

Shaw, Judith Rapoport, M.D., of the NIMH Child Psychiatry Branch, Alan Evans, M.D., of McGill University, and colleagues report on their magnetic resonance imaging (MRI) study during the week of November 12, 2007, in the online edition of the Proceedings of the National Academy of Sciences.

The researchers scanned most of the 446 participants - ranging from preschoolers to young adults - at least twice at about three-year intervals. They focused on the age when cortex thickening during childhood gives way to thinning following puberty, as unused neural connections are pruned for optimal efficiency during the teen years.

In both ADHD and control groups, sensory processing and motor control areas at the back and top of the brain peaked in thickness earlier in childhood, while the frontal cortex areas responsible for higher-order executive control functions peaked later, during the teen years. These frontal areas support the ability to suppress inappropriate actions and thoughts, focus attention, remember things from moment to moment, work for reward, and control movement - functions often disturbed in people with ADHD.

Circuitry in the frontal and temporal (at the side of the brain) areas that integrate information from the sensory areas with the higher-order functions showed the greatest maturational delay in youth with ADHD. For example, one of the last areas to mature, the middle of the prefrontal cortex, lagged five years in those with the disorder.

The motor cortex emerged as the only area that matured faster than normal in the youth with ADHD, in contrast to the late-maturing frontal cortex areas that direct it. This mismatch might account for the restlessness and fidgety symptoms common among those with the disorder, the researchers suggested.

They also noted that the delayed pattern of maturation observed in ADHD is the opposite of that seen in other developmental brain disorders like autism, in which the volume of brain structures peak at a much earlier-than-normal age.

The findings support the theory that ADHD results from a delay in cortex maturation. In future studies, the researchers hope to find genetic underpinnings of the delay and ways of boosting processes of recovery from the disorder. "Brain imaging is still not ready for use as a diagnostic tool in ADHD," noted Shaw. "Although the delay in cortex development was marked, it could only be detected when a very large number of children with the disorder were included. It is not yet possible to detect such delay from the brain scans of just one individual. The diagnosis of ADHD remains clinical, based on taking a history from the child, the family and teachers."

Source: Eurekalert
LIN/P
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
Memory Loss - Can it be Recovered?
International Day of Persons with Disabilities 2021 - Fighting for Rights in the Post-COVID Era
Effect of Blood Group Type on COVID-19 Risk and Severity
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Dyslexia Attention Deficit Hyperactivity Disorder (ADHD) Parkinsons Disease Parkinsons Disease Surgical Treatment Bullying at School - Tips For Schools Brain ADHD Dyscalculia / Learning Disabilities Brain Facts Ataxia 

Recommended Reading
Attention Deficit Hyperactivity Disorder (ADHD)
Attention Deficit Hyperactivity Disorder (ADHD) is a neurobiological disorder that affects normal .....
Autism
Autism is a neurodevelopmental disorder typically characterized by impaired social and ......
Pediatric Use of ADHD Drug may Affect Developing Brain
The use of Ritalin, which is one of the most prescribed drugs for the ADHD, by young children may .....
Ataxia
Ataxia affects coordination. Gait becomes unstable and the patient loses balance. The cerebellum or ...
Dyscalculia / Learning Disabilities
Dyscalculia is a learning disability involving mathematics. Recognized by The WHO, it affects nearl...
Dyslexia
Dyslexia is a reading disability that occurs when the brain does not properly recognize and process ...
Parkinsons Disease
Parkinson’s disease is a neurodegenerative disease caused by progressive dopamine brain cells loss. ...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use