Cravings and consumption of calorie-dense snack foods are affected by magnetic stimulation of a brain area involved in executive function , reports a study.

The women were shown pictures of these foods to stimulate cravings. The researchers then applied a type of magnetic stimulation, called continuous theta-burst stimulation, to decrease activity in the DLPFC. Previous studies have suggested that DLPFC activity plays a role in regulating food cravings.
After theta-burst stimulation, the women reported stronger food cravings—specifically for "appetitive" milk chocolate and potato chips. During a subsequent "taste test," they consumed more of these foods, rather than alternative, less-appetitive foods (dark chocolate and soda crackers).
Stimulation to weaken DLPFC activity was also associated with lower performance on a test of inhibitory control strength (the Stroop test). Decreased DLPFC activity appeared to be associated with increased "reward sensitivity"—it made the participants "more sensitive to the rewarding properties of palatable high caloric foods," the researchers write.
Weak Executive Function May Contribute to Obesity Risk The results highlight the role of executive function in governing "dietary self-restraint," the researchers believe. Executive function, which involves the DLPFC, refers to a set of cognitive functions that enable "top-down" control of action, emotion, and thought.
At the "basic neurobiological level," the study provides direct evidence that the DLPFC is involved in one specific aspect of food cravings: reward anticipation. People with weak executive function may lack the dietary self-control necessary to regulate snack food consumption in "the modern obesogenic environment." Faced with constant cues and opportunities to consume energy-dense foods, such individuals may be more likely to become overweight or obese.
Source-Eurekalert
MEDINDIA



Email










