About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Cough Medicine can be Developed from Bioengineered Yeast

by Hannah Joy on April 3, 2018 at 4:20 PM
Font : A-A+

Cough Medicine can be Developed from Bioengineered Yeast

A novel technology developed helps in the making of a non-narcotic cough suppressant called noscapine from brewer's yeast, reveals a new study.

The researchers from Stanford University inserted 25 foreign genes into the one-celled fungus to turn it into an efficient factory for producing the drug. Many of the inserted genes came from the poppy, but several came from other plants and even from rats. All those genes were recipes for enzymes: protein machines that, working together, can build complex substances from simple starting materials.

Advertisement


The researchers also modified some of the plant, rat and yeast genes, as well as the medium in which the yeast proliferates, to help everything work better together. The result was an 18,000-fold improvement in noscapine output, compared with what could be obtained by just inserting the plant and rat genes into yeast.

"This is a technology that's going to change the way we manufacture essential medicines," said Christina Smolke, PhD, professor of bioengineering. An additional hundredfold improvement will be necessary for commercial viability, she said, but much of that can be achieved by substituting large-scale bioreactors for simple laboratory flasks.
Advertisement

A paper describing the research will be published online April 2 in the Proceedings of the National Academy of Sciences. Smolke is the senior author. Yanran Li, PhD, a former postdoctoral scholar who's now an assistant professor of chemical and environmental engineering at the University of California-Irvine, and postdoctoral scholar Sijin Li, PhD, share lead authorship.

Promise as a cancer drug

Noscapine's cough-suppressing capability was discovered in 1930. The drug has been widely used since the 1960s as a cough medicine throughout Asia, Europe and South America, as well as in Canada, Australia and South Africa. Preclinical trials indicate potential for noscapine as a cancer drug with less toxicity to healthy cells than currently available chemotherapies.

But the only viable source of noscapine is opium poppies. Many tons of noscapine are extracted annually from the plant, which takes a full year to mature. While noscapine itself is harmless, the poppies' illicit potential requires costly controls and restrictive regulations. The plants can be legally grown only in a concentrated geographical area.

Half of all poppies produced for noscapine are in Australia, and the rest are mostly in India, France, Turkey and Hungary, making global noscapine output subject to local environmental events and to varying soil and nutrient conditions. In addition, naturally occurring noscapine must be thoroughly separated from numerous molecular companions, narcotic and otherwise, that don't occur in yeast.

The yeast Smolke's group bioengineered can spew out substantial amounts of noscapine in three or four days. The investigators achieved this result by stitching three separate sections of the noscapine biosynthesis pathway into a single yeast strain.

Initially, noscapine output was meager, Smolke said. "Traditionally, we've gotten our medicines from the natural world, mainly from plants. But the plants' molecular assembly lines have evolved to optimize the plants' survival, not to churn out buckets of one substance we humans want to get our hands on," she said. "Plus, we're putting them into our yeast strain, which is foreign turf. A yeast cell and a poppy cell have a lot in common, but in some respects they're as different as Earth and Mars."

Every enzyme catalyzes its own limited set of chemical reactions. So, the synthesis of complex chemicals requires a whole assembly line of different enzymes working in concert with one another, ideally with each enzyme in the production chain generating just enough of its given intermediate product to keep the next one busy. As with a factory conveyor belt, too little activity, or too much, at any point can jam up the line. Enzymes need energy supplies, too, and some of them require the assistance of additional molecules that may abound in the organism they come from, but not necessarily in a yeast cell.

Soldiers on Mars

"It's as if we're grabbing a couple dozen soldiers from different units, deploying them on Mars, and telling each of them, 'Now, not only am I putting you on Mars, but I want you to get some serious work done here, and I want you to work with these other soldiers you haven't worked with before -- many of them total strangers,'" Smolke said.

"Good luck with that. We modified them to keep them in shape on this planet and to get along with one another better, and we nudged the yeast to help these enzymes grab the resources they need to get the job done."

That entailed, among other things, splicing in rat genes that direct the production of dopamine, a key intermediate in noscapine synthesis. Dopamine's production in plants is poorly understood, but because of dopamine's importance as a crucial chemical in the animal nervous system, the enzymes responsible for its production in mammals have been studied intensively.

The scientists used CRISPR, a gene-editing tool, to alter inserted genes so that the enzymes for which they coded would work most efficiently amid the exotic acidity, osmotic character and chemical composition of their new home. They also souped up the yeast's production of a chemical whose levels would have otherwise been too low to sustain robust noscapine production.

"We're no longer limited to what nature can make," Smolke said. "We're moving to an age where we can borrow nature's medicine-manufacturing processes and, using genetic engineering, build miniature living factories that make what we want."

Stanford's Office of Technology Licensing holds pending patents on intellectual property associated with the findings in this study. Antheia Inc., a biotechnology company based in Menlo Park, California, that Smolke co-founded in 2015, has licensed the technology from Stanford and is now working to commercialize noscapine production in yeast. Smolke is Antheia's chief executive officer.



Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
January is the Thyroid Awareness Month in 2022
Menstrual Disorders
Coffee May Help You Fight Endometrial Cancer
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Drug Toxicity Flu Cough Symptom Evaluation Candida Diet Coughing up Blood Symptom Evaluation Histoplasmosis 

Recommended Reading
New Blood Test Reduces Diagnosis Time for Candidemia, a Deadly Yeast Infection
A novel blood test developed by UPMC research team was found to perform better than traditional ......
Yeast Diversity may Help Explain Difference in the Taste of Chocolates
Do you love Swiss chocolates more than those from Indonesia? You may thank diverse yeast population ...
Yeast can Cure Themselves of Prions
Protein misfolding and clumping associated with diseases such as Alzheimer's can sometimes be ......
The Importance of Yeast in Beer Brewing
Beer yeasts produce chemicals that mimic the aroma of fruits in order to attract flies that can ......
Candida Diet
It is possible to reverse Candida infection through a strictly followed Candida diet plan. Candida d...
Cough Symptom Evaluation
Cough is a symptom of a condition usually affecting the respiratory tract. It may be acute or chroni...
Coughing up Blood Symptom Evaluation
Coughing up blood in anyone can be alarming. But it is not always serious. However, when there is re...
Drug Toxicity
Drug toxicity is an adverse reaction of the body towards a drug that results as a side effect of a d...
Histoplasmosis
Histoplasmosis is a fungal infection caused by breathing spores of the fungus from bird or bat dropp...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2022

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use
open close
CONSULT A DOCTOR
I have read and I do accept terms of use - Telemedicine

Advantage Medindia: FREE subscription for 'Personalised Health & Wellness website with consultation' (Value Rs.300/-)