About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Boffins Locate Genetic Switch That Turns on Tissue Regeneration

by Tanya Thomas on February 7, 2011 at 12:08 PM
Font : A-A+

 Boffins Locate Genetic Switch That Turns on Tissue Regeneration

It is well known that human body has the ability to heal itself. Thanks to the presence of stem cells, many organs can undergo continuous renewal. But this activity of stem cells has to be carefully controlled, as too much activity can cause diseases like cancer.

Now, scientists have identified a genetic switch that controls oxidative stress in stem cells and thus governs stem cell function.

Advertisement

Researchers at the University of Rochester hoped to gain some insight into human stem cell processes by studying the intestinal stem cells of Drosophila (fruit flies), which have genetic structures that, in many ways, mimic those that are found in humans.

Biologists Heinrich Jasper, Christine Hochmuth and Benoit Biteau, and geneticist Dirk Bohmann of the University of Rochester Medical Center studied the function of two genes, Nrf2 and Keap1, which were already known as regulators of cellular responses to oxidative stress.
Advertisement

The research team was surprised to discover that, in contrast to other cell types, Nrf2 was active within the stem cells even in the absence of stress. This finding suggested that Nrf2 might have an unusual role in the control of stem cell function.

Indeed, the researchers found that Nrf2 prevents stem cells from dividing, and that only when Nrf2 is repressed can stem cell division take place. That's where the other gene, Keap1, comes into play.

When the intestine of the fruit fly is damaged, proteins secreted from the damaged cells send signals that activate stem cells.

Jasper and colleagues learned that Keap1 inhibits the function of Nrf2 in stem cells experiencing such signals, making it possible for the stem cells to divide and regenerate the intestinal tissue.

Interestingly, Nrf2 controls stem cell activity by influencing the level of ROS (reactive oxygen species) in these cells. Nrf2 reduces the ROS levels in cells-and that's the mechanism by which Nrf2 helps to determine whether stem cells divide in fruit flies: Intestinal stem cell division can only take place when ROS levels go up, and as long as Nrf2 does its job, that won't happen.

The findings have been published in the journal Cell Stem Cell.

Source: ANI
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
What's New on Medindia
Get Involved and Stand Up for Human Rights on Human Rights Day 2022
Coronary Artery Bypass Grafting
Macronutrients Calculator for Weight Loss
View all
Recommended Reading
News Archive
Date
Category
Advertisement
News Category

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Genetics and Stem Cells Christianson Syndrome 

Most Popular on Medindia

Noscaphene (Noscapine) Drug - Food Interactions Diaphragmatic Hernia Blood - Sugar Chart Blood Pressure Calculator Pregnancy Confirmation Calculator Vent Forte (Theophylline) Hearing Loss Calculator Accident and Trauma Care Daily Calorie Requirements
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Boffins Locate Genetic Switch That Turns on Tissue Regeneration Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests