About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Blood Clotting Factors may Help Fight Multi-drug Resistant Superbugs: Study

by Colleen Fleiss on August 9, 2019 at 10:08 AM
Font : A-A+

Blood Clotting Factors may Help Fight Multi-drug Resistant Superbugs: Study

Coagulation factors were found to offer new strategies for fighting multidrug-resistant bacteria, according to a study published in Cell Research. Infections caused by these bacteria pose an urgent public health risk, as effective drugs to combat them are lacking.

Now a group of researchers at Sichuan University, China, has shown that the factors VII, IX, and X - which are well known for their roles in blood coagulation - may act against Gram-negative bacteria, including extensively drug resistant pathogens such as Pseudomonas aeruginosa and Acetinobacter baumannii. Both bacteria were recently listed by the World Health Organisation among 12 bacteria that pose the greatest threat to human health because of their antibiotic resistance. Gram-negative bacteria are characterized by their cell envelopes, which are composed of an inner cell membrane, a thin cell wall and an outer membrane that make them harder to kill.

Advertisement


Xu Song, the corresponding author said: "In our study, we report a class of human antimicrobial proteins effective against some drug-resistant 'superbugs'. Unlike many antibacterial agents that target the cell metabolism or cytoplasmic membrane, these proteins act by breaking down the lipopolysaccharides of the bacterial outer membrane through hydrolysis. Lipopolysaccharides are crucial for the survival of Gram-negative bacteria."

The ability of bloody coagulation factors to hydrolyse essential lipopolysaccharides in the bacterial cell envelope, suggests they may potentially be used to combat Gram-negative bacteria. Examining the mechanism further, the authors showed that the coagulation factors act on the bacteria via light chains - one of two domains of the proteins. The other domains (heavy chains) have no effect. In cells in the laboratory, the authors showed that treatment of cells of the bacteria E. coli with light chains led to clearly observable damage to the bacterial cell envelope initially and almost complete destruction of the cell within four hours.
Advertisement

The authors found that the light chain of coagulation factor VII was effective against all Gram-negative bacterial cells tested. The light chains, as well as the coagulation factors as a whole, were also shown to be effective in combating Pseudomonas aruginosa and Acetinobacter baumanii infections in mice. Heavy chains had no effect. Xu Song said: "None of the known antibacterial agents has been reported to function by hydrolyzing lipopolysaccharides. Identification of the lipopolysaccharide hydrolysis-based antibacterial mechanism, combined with antibacterial features of blood coagulation factors, and the ability to manufacture them on a large scale at relatively low-cost, may offer new and cost-effective strategies for combating the urgent public-health crisis posed by drug-resistant Gram-negative pathogens."

Source: Eurekalert
Advertisement

Advertisement
Advertisement

Recommended Reading

Latest Research News

 Blind People Feel Their Heartbeat Better Than Those With Sight
Brain plasticity following blindness leads to superior ability in sensing signals from the heart, which has implications for bodily awareness and emotional processing.
New Biomarkers Help Detect Alzheimer's Disease Early
A group of scientists were awarded £1.3 million to create a new “point of care testing” kit that detects Alzheimer's disease biomarkers.
Bone Health and Dementia: Establishing a Link
Is there a connection between Osteoporosis and dementia? Yes, loss in bone density may be linked to an increased risk of dementia in older age.
Is Telomere Shortening a Sign of Cellular Aging?
Link between chromosome length and biological aging marker discovered. The finding helps explain why people with longer telomeres have a lower dementia risk.
Why Is Integrated Structural Biology Important for Cystic Fibrosis?
Integrated structural biology helps discover how the cystic fibrosis transmembrane conductance regulator (CFTR) works.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Blood Clotting Factors may Help Fight Multi-drug Resistant Superbugs: Study Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests