About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Artificial Intelligence To Pick Heart Failure Patients for Costly Treatment

by Ramya Rachamanti on May 13, 2019 at 8:35 PM
Font : A-A+

Artificial Intelligence To Pick Heart Failure Patients for Costly Treatment

Artificial intelligence (AI) has potential to predict sudden death among heart failure patients, so that they can undergo full-fledged expensive treatment to prevent fatal arrhythmias, according to a study presented at ICNC 2019.

The International Conference on Nuclear Cardiology and Cardiac CT (ICNC) is co-organised by the American Society of Nuclear Cardiology (ASNC), the European Association of Cardiovascular Imaging (EACVI) of the European Society of Cardiology (ESC), and the European Association of Nuclear Medicine (EANM).

Advertisement


Around 1-2% of adults in developed countries have heart failure, a clinical syndrome characterised by breathlessness, ankle swelling, and fatigue.2 A high proportion of deaths in these patients, especially those with milder symptoms, occur suddenly due to ventricular arrhythmias.

Implantable cardioverter defibrillators (ICDs) or cardiac resynchronisation therapy with a pacemaker and defibrillator (CRT-D) are recommended for some patients to correct potentially lethal arrhythmias and reduce the risk of sudden death. However, these treatments are expensive and do not work in all patients.
Advertisement

Study author Professor Kenichi Nakajima, of Kanazawa University Hospital, Japan, said: "Our model calculated the probability of a sudden arrhythmic event with an area under the curve (AUC) of 0.74, where 1.0 is perfect prediction and 0.5 is a random result. This could be used to identify very low risk patients for whom an ICD or CRT-D is not required, and very high risk patients who should receive a device. Optimising risk evaluation in this way will improve the cost effectiveness of treatment."

The study included 529 heart failure patients with known two-year outcomes for sudden arrhythmic events (including arrhythmic death, sudden cardiac death, and appropriate shock from an ICD) and death due to heart failure.

Machine learning - a type of AI used by the Google search engine and face recognition on smartphones - was used to discover how eight variables used to predict prognosis of heart failure patients were connected and create a formula correlating them to two-year outcomes.

The eight factors were age, sex, heart failure severity (New York Heart Association functional class), heart pumping function (left ventricular ejection fraction), whether heart failure was caused by restricted blood supply (ischaemia), B-type natriuretic peptide level in the blood, kidney function (estimated glomerular filtration rate), and a nuclear imaging parameter.

During the two-year follow-up there were 141 events (27%) consisting of 37 sudden arrhythmic events (7%) and 104 deaths due to heart failure (20%). The AUC for predicting all events was 0.87, while for arrhythmic events and heart failure death it was 0.74 and 0.91, respectively.

Professor Nakajima said: "This is a preliminary study and we can improve the prediction of arrhythmic events by adding variables and continuing to train the machine learning algorithm."

The imaging parameter was heart-to-mediastinum ratio (HMR) of 123Iodine-metaiodobenzylguanidine (MIBG) uptake. MIBG is a radioisotope analogue of norepinephrine and is used to assess the activity of cardiac sympathetic nerves. Previous studies have shown that HMR predicts cardiac death in patients with heart failure. The measure is obtained by injecting MIBG into a vein, then using imaging to assess uptake in the heart and upper mediastinum (centre of the thoracic cavity).

Professor Nakajima noted that while MIBG imaging is approved in the US and Japan for clinical practice, and in Europe for clinical research, it is less commonly used outside Japan due to its cost. A typical MIBG tracer costs €350 in Japan compared to €1,900-3,400 in the US.3 He said: "While the costs of the scan may be high, it would be value for money if unnecessary device implantations were avoided."



Source: Eurekalert
Advertisement

Advertisement
Advertisement

Recommended Reading

Latest Heart Disease News

 Smokeless Tobacco and Cigarettes Have Similar Effects on Blood Vessels
Both cigarettes and smokeless tobacco, a non-combustible form of tobacco exposure are associated with an increased risk of developing peripheral artery disease.
Is Chronic Kidney Disease Linked to Cardiovascular Disease?
Researchers uncovered an association between heart disease and chronic kidney disease.
 Oral Infection Signs May Predict Heart Disease Risk
How to predict heart disease risk? Machine learning algorithms using indicators of oral infections may accurately predict the possibility of heart disease.
Reproductive Factors Linked to Heart Disease Risk
A higher risk for earlier first birth is limited by acting on traditional heart disease risk factors, such as BMI, high cholesterol and high blood pressure.
Can Radiation Increase Heart Disease Risk?
A new study strengthens evidence linking low dose radiation to risk of heart diseases.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Artificial Intelligence To Pick Heart Failure Patients for Costly Treatment Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests