New strategies need to be evolved to outsmart the intense networking of cancer cells, say cancer experts.
There is increasing evidence that cancer cells communicate, cooperate and even engage in collective decision-making. Based on this knowledge of cancer cells' networking, biophysicists and cancer researchers at Rice University, Tel Aviv University and Johns Hopkins University are suggesting a new strategy for outsmarting cancer through its own social intelligence. "We need to get beyond the notion that cancer is a random collection of cells running amok," said Herbert Levine, co-director of Rice's Center for Theoretical Biological Physics (CTBP) and co-author of the cover article in this week's Trends in Microbiology that pulls together dozens of recent discoveries about the social behavior of cancer cells. "These cells lead sophisticated social lives."
Article co-author Eshel Ben-Jacob, a senior investigator at CTBP, said, "Cancer is a sophisticated enemy. There's growing evidence that cancer cells use advanced communications to work together to enslave normal cells, create metastases, resist drugs and decoy the body's immune system."
Ben-Jacob, Levine and Donald Coffey, a noted cancer researcher at Johns Hopkins, suggest in the article that cancer researchers act like modern generals and go after their enemy's command, control and communication capabilities. The article is in volume 20, issue 9, pages 403-410 of the journal.
"It's time to declare a cyber war on cancer," said Ben-Jacob, who, along with Coffey, is speaking today at a workshop titled "Failures in Clinical Treatment of Cancer" at Princeton University.
Ben-Jacob said cancer cells have been shown to cooperate to elude chemotherapy drugs, much like bacteria that communicate and act as a team to resist attacks from antibiotics. He said some cancers appear to sense when chemotherapy drugs are present and sound an alarm that causes cells throughout a tumor to switch into a dormant state. Similar signals are later used to sound the "all clear" and reawaken cells inside the tumor.
"If we can break the communication code, we may be able to prevent the cells from going dormant or to reawaken them for a well-timed chemotherapeutic attack," Ben-Jacob said. "This is just one example. Our extensive studies of the social lives of bacteria suggest a number of others, including sending signals that trigger the cancer cells to turn upon themselves and kill one another."
Advertisement
Advertisement