About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Age Matters to Antarctic Clams: Study

by Rukmani Krishna on April 24, 2013 at 11:44 PM
 Age Matters to Antarctic Clams: Study

Age matters when it comes to adapting to the effects of climate change, according to a new study of Antarctic clams. The research provides new insight and understanding of the likely impact of predicted environmental change on future ocean biodiversity.

Reporting this week in the journal Global Change Biology scientists from British Antarctic Survey (BAS) and from Germany's University of Kiel and the Alfred Wegener Institute reveal that when it comes to environmental change the reaction of Antarctic clams (laternula elliptica) - a long-lived and abundant species that lives in cold, oxygen-rich Antarctic waters - is different depending on how old the animal is.

Advertisement

The study showed that whilst young clams (average of three years old) try to move to a better area in the sea-bed sediments when they sense warmer temperature or reduced oxygen levels, the older (18 years old) more sedentary clams stay put. This has implications for future clam populations because it is the older animals that reproduce. Scientists anticipate that future oceans will be slightly warmer and contains less oxygen (a condition known as hypoxia).

Lead Author Dr Melody Clark of British Antarctic Survey said,

"Antarctic clams play a vital role in the ocean ecosystem. They draw down carbon into sea-bed sediments and circulate ocean nutrients. We know that they are extremely sensitive to their environment. Our study suggests that the numbers of clams that will survive a changing climate will reduce."
Advertisement

"The Polar Regions are the Earth's early warning system and Antarctica is a great natural laboratory to study to future global change. These small and rather uncharismatic animals can tell us a lot about age and survival in a changing world - they are one of the 'engines of the ocean'." Co-author, Eva Phillip, from the University of Kiel, says: "The study shows that it is important to investigate different ages of a population to understand population wide changes and responses. In respect to Antarctic clams it has been indicated in previous studies that older individuals may suffer more severely in a changing environment and the new study corroborates this assumption. Only the investigation of population-wide effects makes it possible to draw conclusions for coastal ecosystems."

Like humans, clams' muscle mass decreases as they get older. This means they get more sedentary. So when changes are introduced into their habitat, the older clams tend to just sit it out until conditions revert back to normal.

Doris Abele of the Alfred Wegener Institute in Germany says:

"Our study shows that the physiological flexibility of young clams diminishes as they get older. However, the species has evolved in such a way that the fittest animals, that can tolerate life in an extreme environment, survive to reproduce into old age. Climatic change, affecting primarily the older clams, may interfere with this evolutionary strategy, with unpredictable consequences for ecosystems all around Antarctica."

Source: Eurekalert
Font : A-A+

Advertisement

Advertisement
Advertisement

Latest Research News

Brain Circuits That Shape Bedtime Rituals in Mice
New study sheds light on the intrinsic, yet often overlooked, role of sleep preparation as a hardwired survival strategy.
NELL-1 Protein Aids to Reduce Bone Loss in Astronauts
Microgravity-induced bone loss in space, can be reduced by systemic delivery of NELL-1, a protein required for bone growth and its maintenance.
Connecting Genetic Variants to the Alzheimer's Puzzle
Researchers establish connections between Alzheimer's-linked genetic alterations and the functioning of brain cells.
Gene Therapy Sparks Spinal Cord Regeneration
Team at NeuroRestore introduces a groundbreaking gene therapy that has effectively promoted nerve regrowth and reconnection, post spinal cord injury.
Unlocking the Gut Microbiome's Influence on Bone Density
Scientists aim to pinpoint particular functional pathways affected by these bacteria that may have an impact on skeletal health.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
MediBotMediBot
Greetings! How can I assist you?MediBot
×

Age Matters to Antarctic Clams: Study Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests