About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

A New Hope to Defend Against Infection

by Medindia Content Team on September 1, 2007 at 7:25 PM
Font : A-A+

A New Hope to Defend Against Infection

Researchers at the Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center (LA BioMed) have made a discovery in the immune system molecules that shield against infections. Today infections are becoming increasing resistant to antibiotics. These findings give new hope for conquering the risk of antibiotic resistance. The report will be in the September issue of Nature Reviews Microbiology.

Drs. Michael R. Yeaman and Nannette Y. Yount present evidence that small proteins in the immune systems of humans and all kingdoms of life share fundamental structural and functional characteristics that enable these molecules to inhibit or kill microbial pathogens - even as these pathogens evolve to resist conventional antibiotics.

Advertisement

"These findings reveal that nature uses a recurring molecular strategy to defend against infection," said Dr. Yeaman. "A clearer understanding of this strategy provides new opportunities to develop innovative anti-infective therapies to better prevent or treat life-threatening infections that resist current antibiotics."

Most modern antibiotics work by targeting specific structures or functions in microbial pathogens. If the targets change due to mutation, pathogens can quickly become resistant to the antibiotics. In contrast, immune system molecules have retained the ability to fight infection - even as microbes evolve.
Advertisement

"While human ingenuity has thus far created antibiotics that pathogens seem to resist after just a few years, nature has created molecules in our immune systems that retain the ability to defend against infection even after millions of years of evolution," said Dr. Yeaman. "We have a lot to learn from nature."

The September article sheds new light on the molecular basis for the antimicrobial capabilities of these molecules. Drs. Yeaman and Yount report that a structure they discovered in these molecules in 2004 - known as the y core - allows for "hypermutability," or unusually high rates of mutation or modification at specific sites within these molecules.

To do so, the y core structure often contains a "b bulge" motif - a region that affords structural variations otherwise prohibited in protein biochemistry.

"The ability of host defense molecules to change so quickly and with such diversity may be nature's way of keeping pace with rapidly evolving infectious microbes and other threats," said Dr. Yount. These insights may drive new strategies for anti-infective discovery and development. Drs. Yeaman and Yount also said their discoveries significantly advance understanding of immune system evolution. Microbial pathogens are constantly moving targets; in turn - immune systems must adapt or lose effectiveness. Understanding how these molecules have continued to ward off infection could also accelerate development of immunotherapeutics to boost the body's own defenses against infection or other diseases, and reduce the resistance issues that plague today's antibiotics.

Source: Eurekalert
BIN/C
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
Turmeric: Magic Ingredient to Keep you Healthy in Winter
Top 7 Benefits of Good Oral Hygiene
Healthy and Safer Thanksgiving 2021
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Flu 

Recommended Reading
Scientists Trace New Pathway That may Stem Antibiotic Resistance
Scientists at University of Alabama at Birmingham (UAB) have traced the differences and ......
Prescribing of Antibiotics to Children Still at a Level to Cause Drug Resistance, Warn Experts
Regular prescribing of antibiotics to children in the community is sufficient to sustain a high ......

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use