Climate Change: Arid Regions Becoming Drier, Rainfall Regions Wetter

by Gopalan on  April 15, 2010 at 9:03 AM Environmental Health   - G J E 4
 Climate Change: Arid Regions Becoming Drier, Rainfall Regions Wetter
An Australian study offers further confirmation of the climate change phenomenon - arid regions are indeed becoming drier and higher rainfall regions wetter.

In other words, the global water cycle is intensifying, says, Commonwealth Scientific and Industrial Research Organisation (CSIRO), and it is attributed to atmospheric temperature rise.

The study by CSIRO scientists Paul Durack and Dr Susan Wijffels, shows the surface ocean beneath rainfall-dominated regions has freshened, whereas ocean regions dominated by evaporation are saltier. The paper also confirms that surface warming of the world's oceans over the past 50 years has penetrated into the oceans' interior changing deep-ocean salinity patterns.

"This is further confirmation from the global ocean that the Earth's water cycle has accelerated," says Mr Durack - a PhD student at the joint CSIRO/University of Tasmania, Quantitative Marine Science program.

"These broad-scale patterns of change are qualitatively consistent with simulations reported by the Intergovernmental Panel on Climate Change (IPCC).

"While such changes in salinity would be expected at the ocean surface (where about 80 per cent of surface water exchange occurs), sub-surface measurements indicate much broader, warming-driven changes are extending into the deep ocean," Mr Durack said.

The study finds a clear link between salinity changes at the surface driven by ocean warming and changes in the ocean subsurface which follow the trajectories along which surface water travels into the ocean interior.

The ocean's average surface temperature has risen around 0.4ºC since 1950. As the near surface atmosphere warms it can evaporate more water from the surface ocean and move it to new regions to release it as rain and snow. Salinity patterns reflect the contrasts between ocean regions where the oceans lose water to the atmosphere and the others where it is re-deposited on the surface as salt-free rainwater.

"Observations of rainfall and evaporation over the oceans in the 20th century are very scarce. These new estimates of ocean salinity changes provide a rigorous benchmark to better validate global climate models and start to narrow the wide uncertainties associated with water cycle changes and oceanic processes both in the past and the future - we can use ocean salinity changes as a rain-gauge," Mr Durack said.

The findings are being published in the American Journal of Climate.

Based on historical records and data provided by the Argo Program's world-wide network of ocean profilers - robotic submersible buoys which record and report ocean salinity levels and temperatures to depths of two kilometres - the research was conducted by CSIRO's Wealth from Oceans Flagship and partially funded by the Australian Climate Change Science Program. Australia's Integrated Marine Observing System is a significant contributor to the global Argo Program.

Source: Medindia

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
User Avatar
* Your comment can be maximum of 2500 characters
Notify me when reply is posted I agree to the terms and conditions

You May Also Like

View All