Stimulation of a steroid receptor coactivator, SRC-3, found to have a potential impact on outcomes among patients with heart attack, as per the team of researchers at Baylor College of Medicine, who have done the study in mice. The findings, published in the latest edition of the Proceedings of the National Academy of Sciences, showed that stimulation of a steroid receptor coactivator, SRC-3, by a molecule known as MCB-613 after a heart attack prevented the scar and maladaptive repair of heart tissue that can lead to heart failure.
‘MCB-613 decreases damaging remodeling when given within hours after a myocardial infarction and inhibits the subsequent development of heart failure.’
Read More..
"Heart failure after a significant heart attack is a leading cause of death in humans. It often occurs over a few years; a person becomes weaker and weaker and eventually they die," said Dr. Bert O'Malley, professor of molecular and cellular biology at Baylor and lead author of the study.Read More..
"In the mouse model, our team has been able to show that MCB-613 decreases damaging remodeling when given within hours after a myocardial infarction, thereby inhibiting the subsequent development of heart failure."
Researchers had previously discovered and characterized MCB-613 as a small molecule stimulator for SRCs. The family of SRCs are responsible for cellular plasticity and cell growth pathways during both normal and abnormal tissue growth. After a heart attack, the damaged tissue scars.
This results in tissue loss and increased inflammation, fibrosis and a progressive decrease in cardiac function, all of which are hallmarks of myocardial infarction-induced heart failure.
The molecule works by stimulating SRC-3, thus initiating a complex cascade of events in tissue repair and modulation of the inflammatory response. O'Malley and his team also found that after treating the mice model with MCB-613, there were no significant signs of toxicity.
Advertisement
"Our findings show us that this molecule acts directly on heart tissue repair and regeneration after a severe heart attack; however, more studies are needed to fully understand the safety and efficacy before we are able to use this as a therapy in humans," O'Malley said.
Advertisement
"This is a remarkable discovery that may lead to an effective and safe treatment to prevent the progression to heart failure after a heart attack. Heart failure is a devastating disease that is more lethal than all cancers combined, and currently there are no definitive therapies other than heart transplantation. MCB-613 is a great candidate to help solve this huge clinical problem," said Dr. James Martin, Vivian L. Smith professor of regenerative medicine, molecular physiology and biophysics.
Source-Eurekalert