Researchers Developing Wireless Body Sensors to Treat Diabetes, Heart Failure

by Thilaka Ravi on Jun 5 2013 5:46 PM

Researchers Developing Wireless Body Sensors to Treat Diabetes, Heart Failure
Researchers are developing a miniaturized version of sonar technology used in the military for underwater communication, to be applied inside the human body to treat diseases such as diabetes and heart failure in real time.
The advancement relies on sensors that use ultrasounds - the same inaudible sound waves used by the navy for sonar and doctors for sonograms - to wirelessly share information between medical devices implanted in or worn by people.

"This is a biomedical advancement that could revolutionize the way we care for people suffering from the major diseases of our time," said Tommaso Melodia, PhD, UB associate professor of electrical engineering.

The idea of creating a network of wireless body sensors, also called a "body area network," is not new. Development of the technology began roughly 10 years ago.

But most work has focused on linking sensors together via electromagnetic radio frequency waves - the same type used in cellular phones, GPS units and other common wireless devices.

Radio waves can be effective but they have drawbacks such as the heat they generate. Also, because radio waves propagate poorly through skin, muscle and other body tissue, they require relatively large amounts of energy, he said.

Ultrasounds may be a more efficient way to share information, Melodia said, because roughly 65 percent of the body is composed of water. This suggests that medical devices, such as a pacemaker and an instrument that measures blood oxygen levels, could communicate more effectively via ultrasounds compared to radio waves.

"Think of how the Navy uses sonar to communicate between submarines and detect enemy ships. It's the same principle, only applied to ultrasonic sensors that are small enough to work together inside the human body and more effectively help treat diseases," Melodia said.

Another example involves connecting blood glucose sensors with implantable insulin pumps. The sensors would monitor the blood and regulate, through the pumps, the dosage of insulin as needed in real time.

"We are really just scratching the surface of what's possible. There are countless potential applications," he said.

Melodia will use National Science Foundation (NSF) CAREER grant. grant to do more modeling and conduct experiments with ultrasonic, wireless body sensor networks. The grant will support PhD student G. Enrico Santagati, who already has contributed significantly to the project, as well as undergraduate students.


Recommended Readings
Latest Research News
View All

open close