More Fat Burn Upon Blocking Hormone Uptake

by Mohamed Fathima S on  January 18, 2019 at 10:20 AM Research News
RSS Email Print This Page Comment bookmark
Font : A-A+

Scientists at Tsinghua University in Beijing have discovered a new regulatory mechanism that helps the body control the speed of fat metabolism. New drugs that help in burning stored fat and reduce body weight could be developed through this finding. The study is published in the journal PLOS Biology.
More Fat Burn Upon Blocking Hormone Uptake
More Fat Burn Upon Blocking Hormone Uptake

Fat tissue can be white, brown, or beige, differing not only in color but also in metabolism. White fat is principally a storage tissue, with a low rate of metabolism; brown fat tissue, on the other hand, is rich in mitochondria, and burns up stored fat, releasing heat to warm the body, a process called thermogenesis. After prolonged cold exposure, brown-like fat cells develop within white fat, making it beige, and beige fat cells also burn fat to keep the body warm.

A key stimulus for thermogenesis is the hormone norepinephrine, which exerts its effects at the cell surface, and is then taken up into the cell and degraded to prevent overstimulation. A mechanism for the uptake of norepinephrine from fat cells has previously been described, but its rate of uptake is relatively low, suggesting there may be another pathway.

In the new study, the authors found that beige fat cells in mice have high levels of a protein called organic cation transporter 3 (Oct3), which can import norepinephrine into the cells for degradation. The authors showed that reducing the level of Oct3, and thus slowing norepinephrine degradation, led to a higher rate of fat metabolism in beige fat and a higher body temperature. When exposed to prolonged cold, mice deficient in Oct3 increased beige fat content faster than their littermate controls, accompanied by increased activity of thermogenic and mitochondrial biogenic genes.

Gratifyingly, when they looked at human genetic association databases, the authors found that possessing versions of the OCT3 gene that make OCT3 protein with a reduced transport function was associated with a higher metabolic rate. Together, these results indicate that OCT3 plays an important role in regulating the rate of beige fat production and thermogenesis in both mice and humans.

"Our finding that a reduction in OCT3 activity can lead to more beige fat and increased thermogenesis indicating the importance of this transporter in catecholamine recycling in adipose tissues." Chen said. "Developing specific OCT3 inhibitors would open up new therapeutic possibilities for metabolic diseases."



Source: Eurekalert

Post a Comment

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
Notify me when reply is posted
I agree to the terms and conditions
Advertisement

Recommended Reading

More News on:

Cholesterol Burns Diet Lifestyle and Heart Disease Cholesterol - The Enigma Chemical Liposuction Quiz on Weight Loss Diet and Nutrition Tips for Athletes Nutrition IQ Top Diet Foods that Make you Fat Top Fat Burning Workouts 

News A - Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

News Search

Medindia Newsletters

Subscribe to our Free Newsletters!

Terms & Conditions and Privacy Policy.

Find a Doctor

Stay Connected

  • Available on the Android Market
  • Available on the App Store

News Category

News Archive