About Careers Internship MedBlog Contact us

Machine Learning May Predict Colitis Causing Bacterial Risk

by Rishika Gupta on March 26, 2018 at 12:33 PM
 Machine Learning May Predict Colitis Causing Bacterial Risk

An investigational "machine learning" model has been designed to predict a patient's risk of developing C. difficile infection earlier. This machine learning model has been designed to individual institutions needs to diagnose the risk in time.

The findings of this study are published in the Journal of Infection Control and Hospital Epidemiology.


Every year nearly 30,000 Americans die from an aggressive, gut-infecting bacteria called Clostridium difficile (C. difficile), which is resistant to many common antibiotics and can flourish when antibiotic treatment kills off beneficial bacteria that normally keep it at bay.

Preliminary data from their study, which is being published today in Infection Control and Hospital Epidemiology, were presented last October at the ID Week 2017 conference.

"Despite substantial efforts to prevent C. difficile infection and to institute early treatment upon diagnosis, rates of infection continue to increase," says Erica Shenoy, MD, Ph.D., of the MGH Division of Infectious Diseases, co-senior author of the study and assistant professor of Medicine at Harvard Medical School.

"We need better tools to identify the highest risk patients so that we can target both prevention and treatment interventions to reduce further transmission and improve patient outcomes," he added.

The authors note that most previous models of C. difficile infection risk were designed as "one size fits all" approaches and included only a few risk factors, which limited their usefulness.

Co-lead authors Jeeheh Oh, a U-M graduate student in Computer Science and Engineering, and Maggie Makar, MS, of MIT's Computer Science and Artificial Intelligence Laboratory and their colleagues took a "big data" approach that analyzed the whole electronic health record (EHR) to predict a patient's C. difficile risk throughout the course of hospitalization.

Their method allows the development of institution-specific models that could accommodate different patient populations, different EHR systems and factors specific to each institution.

"When data are simply pooled into a one-size-fits-all model, institutional differences in patient populations, hospital layouts, testing and treatment protocols, or even in the way staff interact with the EHR can lead to differences in the underlying data distributions and ultimately to poor performance of such a model," says Jenna Wiens, PhD, assistant professor of Computer Science and Engineering at U-M and co-senior author of the study. "To mitigate these issues, we take a hospital-specific approach, training a model tailored to each institution."

Using their machine-learning-based model, the investigators analyzed de-identified data - including individual patient demographics and medical history, details of their admission and daily hospitalization, and the likelihood of exposure to C. difficile - from the EHRs of almost 257,000 patients admitted to either MGH or to Michigan Medicine - U-M's academic medical center - over periods of two years and six years, respectively. The model generated daily risk scores for each individual patient that, when a set threshold is exceeded, classify patients as at high risk.

Overall, the models were highly successful at predicting which patients would ultimately be diagnosed with C. difficile.

In half of those who were infected, accurate predictions could have been made at least five days before diagnostic samples were collected, which would allow highest-risk patients to be the focus of targeted antimicrobial interventions.

If validated in prospective studies, the risk prediction score could guide early screening for C. difficile. For patients diagnosed earlier in the course of the disease, initiation of treatment could limit the severity of the illness, and patients with confirmed C. difficile could be isolated and contact precautions instituted to prevent transmission to other patients.

The research team has made the algorithm code freely available here for others to review and adapt for their institutions. Shenoy notes that facilities that explore applying similar algorithms to their institutions will need to assemble the appropriate local subject-matter experts and validate the performance of the models in their institutions.

Study co-author Vincent Young, MD, Ph.D., the William Henry Fitzbutler Professor in the Department of Internal Medicine at U-M, adds, "This represents a potentially significant advance in our ability to identify and ultimately act to prevent infection with C. difficile. The ability to identify patients at greatest risk could allow us to focus expensive and potentially limited prevention methods on those who would gain the greatest potential benefit. I think that this project is a great example of a 'team science' approach to addressing complex biomedical questions to improve healthcare, which I expect to see more of as we enter the era of precision health."

Source: Eurekalert
Font : A-A+



Latest News on IT in Healthcare

Oracle Revolutionizes Healthcare With Generative AI Advancements
Oracle has added healthcare-specific features to the Oracle Fusion Cloud Applications Suite, aiding healthcare in trengthening supply chains, and elevating patient care.
AI Sheds Light on Predicting Post-Hip Fracture Mortality Risk
Explore how artificial intelligence is utilized to predict the likelihood of death in the years after experiencing a hip fracture.
Robotics Market Set To Reach $218 Billion By 2030
Cloud computing plays a central role in robotics market, enabling more rapid, secure, and scalable management of sensing, computation, and memory.
The Road to Robotic Bladder Transplantation
In the pursuit of robotic bladder transplantation, significant progress is detailed in a new study.
Microsoft and Paige Collaborate on World's Largest Cancer-Fighting AI Model
The AI model can detect both prevalent cancers and the challenging-to-diagnose rare ones.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
Greetings! How can I assist you?MediBot

Machine Learning May Predict Colitis Causing Bacterial Risk Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests