About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Golden Nanopill for Drug Delivery That Could Transform Medicine

by Aishwarya Radhakrishnan on December 2, 2017 at 11:44 PM
Font : A-A+

Golden Nanopill for Drug Delivery That Could Transform Medicine

Plasmonic nanovesicles have made possible, the idea of a microscopic gold pill, that could travel to a specific location in your body and deliver a drug just where it is needed.

These minute capsules can navigate the bloodstream, and, when hit with a quick pulse of laser light, change shape to release their contents. It can then exit the body, leaving only the desired package.

Advertisement


Clinicians are beginning to test plasmonic nanovesicles on head and neck tumors. They can also help efforts to study the nervous system in real-time and provide insights into how the brain works.

However, like many aspects of nanotechnology, the devil is in the details. Much remains unknown about the specific behavior of these nanoparticles - for instance, the wavelengths of light they respond to and how best to engineer them.
Advertisement

Writing in the October 2017 issue of Advanced Optical Materials, Zhenpeng Qin, an assistant professor of Mechanical Engineering and Bioengineering at the University of Texas at Dallas, his team, and collaborators from the University of Reims (Dr. Jaona Randrianalisoa), reported the results of computational investigations into the collective optical properties of complex plasmonic vesicles.

They used the Stampede and Lonestar supercomputers at the Texas Advanced Computing Center , as well as systems at the ROMEO Computing Center at the University of Reims Champagne-Ardenne and the San Diego Supercomputing Center (through the Extreme Science and Engineering Discovery Environment) to perform large-scale virtual experiments of light-struck vesicles.

"A lot of people make nanoparticles and observe them using electron microscopy," Qin said. "But the computations give us a unique angle to the problem. They provide an improved understanding of the fundamental interactions and insights so we can better design these particles for specific applications."

STRIKING BIOMEDICAL GOLD Gold nanoparticles are one promising example of a plasmonic nanomaterial. Unlike normal substances, plasmonic nanoparticles (typically made of noble metals) have unusual scattering, absorbance, and coupling properties due to their geometries and electromagnetic characteristics. One consequence of this is that they interact strongly with light and can be heated by visible and ultraviolet light, even at a distance, leading to structural changes in the particles, from melting to expansion to fragmentation.

Gold nanoparticle-coated liposomes -- spherical sacs enclosing a watery core that can be used to carry drugs or other substances into the tissues -- have been demonstrated as promising agents for light-induced content release. But these nanoparticles need to be able to clear the body through the renal system, which limits the size of the nanoparticles to less than few nanometers.

The specific shape of the nanoparticle for instance, how close together the individual gold molecules are, how large the core is, and the size, shape, density and surface conditions of the nanoparticle determines how, and how well, the nanoparticle functions and how it can be manipulated.

Qin has turned his attention in recent years to the dynamics of clusters of small gold nanoparticles with liposome cores, and their applications in both diagnostic and therapeutic areas.

"If we put the nanoparticles around a nano-vesicle, we can use laser light to pop open the vesicle and release molecules of interests," he explained. "We have the capability to assemble a different number of particles around a vesicle by coating the vesicle in a layer of very small particles. How can we design this structure? It's a quite interesting and complex problem. How do the nanoparticles interact with each other - how far are they apart, how many are there?"

SIMULATIONS PROVIDE FUNDAMENTAL AND PRACTICAL INSIGHTS To gain insights into the ways plasmonic nanoparticles work and how they can be optimally designed, Qin and colleagues use computer simulation in addition to laboratory experiments.

In their recent study, Qin and his team simulated various liposome core sizes, gold nanoparticle coating sizes, a wide range of coating densities, and random versus uniform coating organizations. The coatings include several hundred individual gold particles, which behave collectively.

"It is very simple to simulate one particle. You can do it on an ordinary computer, but we're one of the first to looking into a complex vesicle," Randrianalisoa said. "It is really exciting to observe how aggregates of nanoparticles surrounding the lipid core modify collectively the optical response of the system."

The team used the discrete dipole approximation (DDA) computation method in order to make predictions of the optical absorption features of the gold-coated liposome systems. DDA allows one to compute the scattering of radiation by particles of arbitrary shape and organization. The method has the advantage of allowing the team to design new complex shapes and structures and to determine quantitatively what their optical absorption features will be.

The researchers found that the gold nanoparticles that make up the outer surface have to be sufficiently close together, or even overlapping, to absorb sufficient light for the delivery system to be effective. They identified an intermediate range of optical conditions referred to as the "black gold regime," where the tightly packed gold nanoparticles respond to light at all wavelengths, which can be highly useful for a range of applications.

"We'd like to develop particles that interact with light in the near-infrared range - with wavelengths of around 700 to 900 nanometers -- so they have a deeper penetration into the tissue," Qin explained.

They anticipate that this study will provide design guidelines for nano-engineers and will have a significant impact on the further development of complex plasmonic nanostructures and vesicles for biomedical applications.

Inspired by recent developments in optogenetics, which uses light to control cells (typically neurons) in living tissues, Qin and his team plan to use the technology to develop a versatile optically-triggered system to perform real-time studies of brain activity and behavior.

He hopes the fast release feature of the new technique will provide sufficient speed to study neuronal communication in neuroscience research.

"There are a lot of opportunities for using computations to understand fundamental interactions and mechanisms that we can't measure," Qin said. "That can feed back into our experimental research so we can better advance these different techniques to help people."



Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
Turmeric: Magic Ingredient to Keep you Healthy in Winter
Top 7 Benefits of Good Oral Hygiene
Healthy and Safer Thanksgiving 2021
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Drug Toxicity Signature Drug Toxicity Drugs Banned in India Nanotechnology Drug Delivery System 3 D Printing Drugs -Technology and Future 

Recommended Reading
Use of Nanotechnology in Healthcare
Nanotechnology provides several potential solutions for many life-threatening diseases. Learn more ....
Novel Technique Improves Delivery of Chemotherapy Nanodrugs
Researchers have developed a new method for delivering chemotherapy nanodrugs with reduced ......
Multifunctional Nanoparticles Show Promise for Cancer Surgery
Engineered naphthalocyanine-based nanoparticles (SiNc-PNP), light up during surgery when they ......
3 D Printing Drugs -Technology and Future
3-D printing technology in pharmaceuticals is an advanced drug delivery system that uses computer ai...
Drug Delivery System
Drug delivery systems, is a technology using various chemicals to bind the target drugs, carry them ...
Drug Toxicity
Drug toxicity is an adverse reaction of the body towards a drug that results as a side effect of a d...
Drugs Banned in India
Several drugs are either banned or withdrawn after introduction in the market....

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use