Medindia
Why Register as Premium Member if you have Hypertension? Click Here
Medindia » Research News

You Can Now Find Hereditary Defects With A Scanner

by Rukmani Krishnaon January 29, 2013 at 11:44 PM

Constantly under attack from UV light, toxins and metabolic processes is our DNA. The damaged DNA is continually repaired by proteins and enzymes. Unrecognized and therefore unrepaired damage to the genetic material, however, accelerates aging and causes cancer and genetic disorders. A team headed by veterinary pharmacologist and toxicologist Hanspeter N�geli has now discovered that the protein XPD plays a key role in locating damaged DNA.


XPD protein as scanner Genetic information is stored on approximately three billion base pairs of adenine/thymine or cytosine/guanine in the thread-like DNA double helix. The researchers reveal that the XPD protein works like a scanner that glides along the DNA double helix, scouring the bases for signs of damage. As soon as one of the protein's ferrous sensors encounters damage as it moves along, it is stopped, thereby marking damaged spots in need of repair. Besides patching up DNA, XPD is also involved in cell division and gene expression, thus making it one of the most versatile cell proteins.

Basis for possible courses of therapy While repairing the DNA protects healthy body tissue from damage to the genetic material, however, it diminishes the impact of many chemotherapeutic substances against cancer. "Damage recognition using XPD opens up new possibilities to stimulate or suppress DNA repair according to the requirements and target tissue," explains Hanspeter N�geli. The results could thus aid the development of new cancer treatments.

Source: Eurekalert

View Non AMP Site | Back to top ↑