About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Zebrafish Used to Discover Epilepsy Drug

by Savitha C Muppala on September 5, 2013 at 7:51 AM
Font : A-A+

 Zebrafish Used to Discover Epilepsy Drug

An antihistamine discovered in the 1950s to treat itching may also prevent seizures in an intractable form of childhood epilepsy, according to researchers at UC San Francisco who tested it in zebrafish bred to mimic the disease.

The researchers said their unexpected discovery offers a glimmer of hope for families of children with Dravet Syndrome, a rare genetic disorder that manifests in early childhood with disabling, lifelong consequences. These include dozens, if not hundreds, of daily seizures, as well as profound cognitive and social deficits.

Advertisement

"It is very unfortunate for these children and families, as they often live from seizure to seizure," said Scott C. Baraban, PhD, lead author of the article, UCSF William K. Bowes Jr. Endowed Chair in Neuroscience Research and professor of Neurological Surgery.

Small, translucent and easy to breed, zebrafish are increasingly being used in place of rodents to screen drugs for rare genetic disorders. But no one had used them for epilepsy drug screening until Baraban's team found zebrafish with a genetic mutation identical to the one that causes Dravet Syndrome.
Advertisement

Baraban said his method of drug discovery could be used to screen drugs for any form of epilepsy caused by mutations in a single gene - a number of which were recently discovered in another UCSF study on epilepsy. The finding is described in a paper published online in Nature Communications on Sept. 4.

Dravet Syndrome usually develops because of mutations in the SCN1A gene, which codes for proteins in sodium ion channels. These channels act as pores that allow charged ions to pass through the membranes of neurons and regulate how they fire. In Dravet Syndrome, these channels let in too many ions and the neurons fire excessively, causing seizures. Other forms of genetically-caused epilepsy involve similar problems in potassium and calcium channels.

While some adult forms of epilepsy can be treated by surgically removing small areas of electrically malfunctioning brain tissue, genetic forms of epilepsy cannot, because they involve neurons all over the brain. Instead, researchers are focusing their efforts on finding effective drugs.

Baraban's team discovered the efficacy of clemizole, which had previously been used only as an antihistamine and an antiviral drug, by accident. Since antihistamines can make seizures worse, it's unlikely he would have focused on the drug if he hadn't used a study design intended to circumvent bias about which drugs might work. Instead of beginning with a hypothesis based on previous findings, Baraban used a random assortment of 320 compounds in a chemical library of drugs that had already been approved by the Food and Drug Administration. He did not look to see what the drugs were until after he had his results.

Why clemizole works is still a mystery. Baraban's group tried 10 other antihistamines, four mentioned in the paper and six others since then, and none blocked seizures. Baraban concluded that the antihistamine itself was probably not the mechanism of the drug's anti-seizure effect and plans future studies to try to figure this out.

This study used mutant zebrafish discovered a few years ago by then-UCSF neuroscientist, Herwig Baier, PhD, now at the Max Planck Institute of Neurobiology in Germany. By chance, one strain of the fish had a mutation in the same sodium channel gene as the one implicated in Dravet Syndrome.

Just like people with Dravet Syndrome, the fish with this mutation had spontaneous seizures that did not respond to many drugs used to treat epilepsy. But they did respond to a form of the ketogenic - or high-fat - diet, which also often helps reduce seizures in children with Dravet Syndrome. The mutant fish also showed the same developmental pattern as children, whose seizures do not begin until after their first year. In fish, seizures began three days after fertilization. The fish typically died at 10 or 12 days. People with Dravet Syndrome are also vulnerable to sudden unexpected death in epilepsy, or SUDEP.

In these studies, Baraban and colleagues worked with larvae no larger than a human eyelash. They measured their brain activity with a micro-electrode just 1 micron in diameter and tracked their tiny, convulsive movements with special software. He said the seizures in these mutant fish closely resembled those in humans with Dravet Syndrome. Since the larvae are so small and easy to work with, they can screen five times as many drugs in his small laboratory as a much larger lab can do with rodents.

Baraban said that it's important to use whole animals in screening drugs for epilepsy, since it arises from the activity of neural circuits containing many thousands of cells. Even so, his team plans to conduct lab studies to test clemizole's effect on individual neurons generated from patients with Dravet syndrome. They'll use induced Pluripotent Stem Cell (iPSC) technology, which involves generating individual neurons from patients with Dravet syndrome, as a preliminary step before testing the drug in people.

Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
News Category
What's New on Medindia
First-Ever Successful Pig-To-Human Kidney Transplantation
World Osteoporosis Day 2021 -
Spirituality and Mental Health
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Drug Toxicity Epilepsy Febrile Fits / Febrile Convulsions Signature Drug Toxicity Reye’s Syndrome Convulsions Electroencephalogram Aicardi-Goutieres Syndrome Cavernous Malformation Dravet Syndrome 

Recommended Reading
High Doses of Anti-Epilepsy Drug Linked to High Risk of Birth Defects
The risk of birth defects in babies born to epileptic mothers could be lowered by reducing the dose ...
Researchers Make Progress in Linking Some Forms of Epilepsy to Genetics
Certain patients with a rare type of epilepsy called epilepsy aphasia have mutations in the same ......
Many Neurologists Unaware of Safety Risks Related to Anti-epilepsy Drugs: Study
A fifth of U.S. neurologists appear unaware of serious drug safety risks associated with various ......
Aicardi-Goutieres Syndrome
Aicardi-Goutieres Syndrome is observed in infants and older children. To date, defects in 6 genes ar...
Cavernous Malformation
Cavernous malformations are malformations in blood vessels that can cause neurological disorders whe...
Convulsions
Seizure or a convulsion is a result of abnormal electrical activity in the brain. If there are two o...
Dravet Syndrome
The result of a rare genetic mutation, Dravet syndrome is an unusual case of epilepsy in children....
Drug Toxicity
Drug toxicity is an adverse reaction of the body towards a drug that results as a side effect of a d...
Electroencephalogram
An electroencephalogram (EEG) detects electrical activity in the brain using electrodes attached to ...
Epilepsy
Fits or convulsions or Epilepsy is characterized by recurrent, involuntary seizures and is described...
Febrile Fits / Febrile Convulsions
High fever in kids can cause convulsions and are called febrile fits that do not include the seizure...
Reye’s Syndrome
Reye's syndrome is a medical emergency chiefly affecting children and teenagers and is marked by the...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use