About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Your Gut may be Key to Preventing Parkinsonís Disease

by Dr. Trupti Shirole on September 27, 2016 at 10:27 PM
Font : A-A+

 Your Gut may be Key to Preventing Parkinsonís Disease

Parkinson's disease is a brain disorder that erodes motor control and balance over time. It affects some 500,000 people in the United States, suggested the National Institutes of Health. The disease occurs when neuronsónerve cellsóin the brain that control movement become impaired or die.

Normally, these neurons produce dopamine, and when they are damaged or killed, the resulting dopamine shortage causes the motor-control problems associated with the disease.

Advertisement


Scientists have previously linked Parkinson's to defects in mitochondria, the energy-producing machinery found in every human cell. Why and how mitochondrial defects effect neurons remain a mystery. Some think the impaired mitochondria starve neurons of energy; others believe they produce a neuron-harming molecule.

The gut may be key to preventing Parkinson's disease, suggested researchers at the University of Iowa. Cells located in the intestine spark an immune response that protects nerve cells, or neurons, against damage connected with Parkinson's disease.
Advertisement

Acting like detectives, the immune intestinal cells identify damaged machinery within neurons and discard the defective parts. That action ultimately preserves neurons whose impairment or death is known to cause Parkinson's. "We think somehow the gut is protecting neurons," says Veena Prahlad, assistant professor in biology at the UI and corresponding author on the paper published in the journal Cell Reports.

Prahlad's team exposed roundworms to a poison called rotenone, which researchers know kills neurons whose death is linked to Parkinson's. As expected, the rotenone began damaging the mitochondria in the worms' neurons. To the researchers' surprise, though, the damaged mitochondria did not kill all of the worms' dopamine-producing neurons; in fact, over a series of trials, an average of only seven percent of the worms, roughly 210 out of 3,000, lost dopamine-producing neurons when given the poison.

"That seemed intriguing, and we wondered whether there was some innate mechanism to protect the animal from the rotenone," Prahlad says.

It turns out there was. The roundworms' immune defenses, activated when the rotenone was introduced, discarded many of the defected mitochondria, halting a sequence that would've led to the loss of dopamine-producing neurons. Importantly, the immune response originated in the intestine, not the nervous system.

"If we can understand how this is done in the roundworm, we can understand how this may happen in mammals," Prahlad says.

The researchers plan to conduct more experiments, but they've got some interesting hypotheses. One is the intestinal immune cells are, according to Prahlad, "constantly surveilling mitochondria for defects."

Even more, those cellular watchdogs may be keeping their eyes on the mitochondria "because they don't trust them," Prahlad suggests. The reason has to do with the prevailing theory that mitochondria originated independently as a type of bacterium and were only later incorporated into the cells of animal, plants, and fungi as an energy producer.

If that theory is correct, the intestinal immune responders may be especially sensitive to changes in mitochondrial function not only for its potential damaging effects, but because of the mitochondria's ancient and foreign past as well.

"How it's happening is suggestive of the possibility that the innate immune response is constantly checking its mitochondria," Prahlad says, "perhaps because of the bacterial origin of the mitochondria."

Source: Newswise
Advertisement

Advertisement
Advertisement

Recommended Reading

Latest Research News

 Blind People Feel Their Heartbeat Better Than Those With Sight
Brain plasticity following blindness leads to superior ability in sensing signals from the heart, which has implications for bodily awareness and emotional processing.
New Biomarkers Help Detect Alzheimer's Disease Early
A group of scientists were awarded £1.3 million to create a new ďpoint of care testingĒ kit that detects Alzheimer's disease biomarkers.
Bone Health and Dementia: Establishing a Link
Is there a connection between Osteoporosis and dementia? Yes, loss in bone density may be linked to an increased risk of dementia in older age.
Is Telomere Shortening a Sign of Cellular Aging?
Link between chromosome length and biological aging marker discovered. The finding helps explain why people with longer telomeres have a lower dementia risk.
Why Is Integrated Structural Biology Important for Cystic Fibrosis?
Integrated structural biology helps discover how the cystic fibrosis transmembrane conductance regulator (CFTR) works.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Your Gut may be Key to Preventing Parkinsonís Disease Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests