About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Wireless Light Delivery to Deep Tissues as Cancer Therapy

by Chrisy Ngilneii on January 31, 2018 at 12:32 PM
Font : A-A+

Wireless Light Delivery to Deep Tissues as Cancer Therapy

A wireless technique to deliver light into the deep regions of the body has been developed by a research team at the National University of Singapore.

This wireless delivery of light is to activate light-sensitive drugs for photodynamic therapy (PDT) which is a targeted cancer therapy.

Advertisement


While PDT is a powerful light-induced cancer treatment, it is often limited to surface cancers due to the low penetration of light through biological tissue. This wireless approach of light delivery enables PDT to be used on the inner organs of the body with fine control. This technology could potentially enable PDT to be used to treat a wider range of cancers, such as brain and liver cancer.

Asst Prof Ho said, "Our approach of light delivery will provide significant advantages for treating cancers with PDT in previously inaccessible regions. Powered wirelessly, the tiny implantable device delivers doses of light over long time scales in a programmable and repeatable manner. This could potentially enable the therapies to be tailored by the clinician during the course of treatment."
Advertisement

Understanding photodynamic therapy
PDT is a treatment method that uses a light-sensitive drug called a photosensitizer, that is triggered by a specific wavelength of light, to produce a form of oxygen that kills nearby cells. This provides a precision approach to cancer therapy that overcomes many of the whole-body side effects of classical drugs such as chemotherapy. In addition to directly killing cancer cells, PDT shrinks or destroys tumors by damaging blood vessels in the tumor, preventing the cancer cells from receiving necessary nutrients. PDT may also activate the immune system to attack the tumor cells.

However, PDT has so far been limited to the treatment of surface cancers. Traditional light sources such as light-emitting diodes (LEDs) or lasers may be used for surface tumors, such as skin cancer, but the low penetration of light through tissue limits the depth to less than a centimeter. For the inner lining of some organs, such as the esophagus, an endoscope - a thin, lighted tube used to look at tissues inside the body - can be used to insert a fiber optic cable, but other regions cannot be easily accessed by this way. For organs such as the brain or liver, the organ must be exposed by surgery before PDT can be used.

Wireless light switch
The research team's novel approach of enabling PDT to be used for the inner organs of the body is achieved by inserting a tiny wireless device at the target site, extending the spatial and temporal precision of PDT deep within the body.

The miniaturized device, which weighs 30 mg and is 15 mm3 in size, can be easily implanted, and uses a wireless powering system for light delivery. Once the device has been implanted at the target site, a specialized radio-frequency system wirelessly powers the device and monitors the light-dosing rate.

The team demonstrated the therapeutic efficacy of this approach by activating photosensitizers through thick tissues - more than three centimeters - inaccessible by direct illumination, and by delivering multiple controlled doses of light to suppress tumor growth.

"This novel approach enables ongoing treatment to prevent re-occurrence of a cancer, without additional surgery. The application of the technology can also be extended to many other light-based therapies, such as photothermal therapy, that face the common problem of limited penetration depth. We hope to bring these capabilities from bench to beside to provide new opportunities to shine light on human diseases," said Prof Zhang.

The team is now working on developing nanosystems for targeted delivery of photosensitizers. They are also coming up with minimally invasive techniques for implanting the wireless devices at the target site, and looking into integrating sensors to the device to monitor the treatment response in real-time.

The complete research is published in the journal Proceedings of the National Academy of Sciences.

Source: Eurekalert
Advertisement

Advertisement
Advertisement

Recommended Reading

Latest Cancer News

 Tobacco Use Among Cancer Patients Likely to Increase Symptom Burden
A new study assessed the association of cigarette smoking and vaping on cancer-related symptom burden (fatigue, pain, emotional problems) and quality of life.
Breaking New Ground in Breast Cancer Therapy Without Chemotherapy
Scientists are making strides in personalized breast cancer therapy by developing a highly accurate molecular classifier test for breast cancer patients.
 Prostate Cancer 'Test by Request' Policies: Beneficial or Detrimental
Experts suggest high-income countries implement a comprehensive risk-based approach for prostate-specific antigen (PSA) testing to reduce overdiagnosis and overtreatment.
 Oral Cancer Cells Use Fat as Fuel to Escape from Immunity
New study identifies the role of metabolic comorbidities such as obesity in contributing to the immunogenicity of oral cancer through the immune pathway STING-IFN-I.
 Treating Anal Cancer With Smarter and Kinder Approach
Recent clinical trial results have shown that reducing the dose and duration of radiotherapy treatments for anal cancer may result in fewer side effects.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Wireless Light Delivery to Deep Tissues as Cancer Therapy Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests