Medindia LOGIN REGISTER
Medindia

Woven Cartilage

by Medindia Content Team on Feb 9 2007 7:26 PM

Using a unique weaving machine of their design, Duke University Medical Center researchers have created a three-dimensional fabric "scaffold" that could greatly improve the ability of physicians to repair damaged joints with the patient's own stem cells.

"If further experiments are successful, the scaffold could be used in clinical trials within three or four years," said Franklin Moutos, a graduate student in the Orthopedic Bioengineering Laboratory who designed and built the weaving machine. "The first joints to be treated this way would likely be hips and shoulders, though the approach should work for cartilage damage in any joint."

In laboratory tests, the fabric scaffold that the researchers have created had the same mechanical properties as native cartilage. In the near future, surgeons will be able to impregnate custom-designed scaffolds with cartilage-forming stem cells and chemicals that stimulate their growth and then implant them into patients during a single procedure, the researchers said.

"By taking a synthetic material that already has the properties of cartilage and combining it with living cells, we can build a human tissue that can be integrated rapidly into the body, representing a new approach in the field of tissue engineering," Moutos said.

"Once implanted, the cartilage cells will grow throughout the scaffold, and over time the scaffold will slowly dissolve, leaving the new cartilage tissue" he said. "The use of this scaffold will also permit doctors to treat larger areas of cartilage damage, since the current approaches are only suitable for repairing smaller areas of cartilage damage or injury..."

Most machines that produce fabrics weave one set of fibers that are oriented perpendicularly to another set of fibers. However, the machine that Moutos developed adds a third set of fibers, which creates a three-dimensional product. Also, since the scaffold is a woven material, there are tiny spaces where cartilage cells can nestle and grow.

Source-Bio-Bio Technology
SRM


Advertisement