About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

PI-103 Effective against Brain Cancer

by Medindia Content Team on May 16, 2006 at 7:20 PM
Font : A-A+

PI-103 Effective against Brain Cancer

According to the researchers at the University of California, San Francisco (UCSF) they have identified a class of compounds that prevents the growth of brain cancer. The compound called the PI-103 acts as a potent drug candidate against lethal brain tumor. In animal studies (mice) with human glioma grafts the drug is found to be potent against proliferating cancer cells. The unique effectiveness of PI-103 stems from its ability to attack two separate steps in the series of signals that trigger the spread of cancer. The dual blockade proved to be a safe and effective inhibitor of cancer cell proliferation in mice with the human tumors, the scientists found.

The glioma research is being published online May 15 by the journal Cancer Cell. A description of the strategy used to identify the molecular level action of the inhibitors was published online by the journal Cell on April 27. Food and Drug Administration approval five years ago of the cancer drug Gleevec marked a promising new strategy against cancer. Gleevec was the first drug on the market designed to block ubiquitous signaling molecules called protein kinases - enzymes known to trigger normal cell proliferation, and in the case of cancer, the growth of tumors.

Advertisement

Another group of kinases, called lipid kinases are now emerging as important new targets, especially PI3 alpha kinase, an enzyme often found to be overactive in brain, breast, colon and stomach cancers. But the sheer number of related kinases - 15 in the PI3 kinase family alone - and uncertainty about how each acts in the body - has stalled progress. Broad spectrum drugs that inhibit many related kinases inevitably cause toxicity and are poor drug candidates. To overcome this hurdle, Kevan Shokat, PhD, a Howard Hughes Medical Institute investigator at UCSF, and Zachary Knight, a postdoctoral fellow in his lab, developed a strategy to systematically inhibit many different but related kinases to identify which ones might be prime targets to treat brain tumors.

In the Cell paper they described their success synthesizing a panel of different PI3 kinase inhibitors, showing for the first time the structural basis of the inhibitors' abilities to block different PI3 kinases. They used the new compounds to dissect the role of PI3 kinases in insulin signaling and in cancer. Drawing on this new tool, William Weiss, MD, associate professor of neurology at UCSF and an investigator in UCSF's Comprehensive Cancer Center, developed the strategy to treat gliomas. These cancers are the most common solid tumor of childhood, and about half of the people diagnosed with gliomas die within a year of diagnosis. Weiss and his colleagues report in the Cancer Cell paper that one PI3 kinase inhibitor in particular - PI-103 -- is unusually effective against gliomas in mice.
Advertisement

They believe the inhibitor is a promising drug candidate, and a UCSF neuro-oncologist is developing plans to launch a clinical trial within a year, Weiss says. The Weiss team discovered that the inhibitor's effectiveness lies in its dual impact. It inhibits both PI3 kinase and a protein kinase known as mTOR which acts downstream of PI3 kinase and is part of the cell's nutrient-sensing system. Clinical trials using inhibitors of mTOR alone have had disappointing results, Weiss says. One reason appears to be that the two kinases are part of a feedback loop. His group showed that mTOR inhibitors in clinical trials actually activate PI3-kinase while they inhibit mTOR. In effect, the drugs are blocking and encouraging cancer growth at the same time.

The new inhibitor offers a mechanism through which to block both the PI3 and the mTOR kinase pathways, a strategy that appears to be particularly effective at slowing growth of gliomas. Lead author on the Cancer Cell paper is Qi-Wen Fan, MD, PhD, assistant adjunct professor of neurology, in the Weiss lab. Co-authors along with Weiss, Shokat and Knight, all at UCSF, are David Goldenberg, staff research associate in neurology; Wei Yu, PhD, assistant research anatomist; and David Stokoe, PhD, assistant professor in the Cancer Research Institute. Shokat, UCSF professor of cellular and molecular pharmacology, is also a faculty affiliate in QB3, the Institute for Quantitative Biomedical Research.

Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
What's New on Medindia
Alarming Cesarean Section Trends in India - Convenience or Compulsion of Corporate Healthcare
Quiz on Low-Calorie Diet for Diabetes
World Heart Day in 2022- Use Heart for Every Heart
View all
Recommended Reading
News Archive
Date
Category
Advertisement
News Category

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Parkinsons Disease Cancer and Homeopathy Parkinsons Disease Surgical Treatment Cancer Facts Cancer Brain Brain Facts Ataxia Language Areas in The Brain Ways to Improve your Intelligence Quotient (IQ) 

Most Popular on Medindia

Blood Donation - Recipients Sanatogen Selfie Addiction Calculator Calculate Ideal Weight for Infants Vent Forte (Theophylline) Drug Interaction Checker Daily Calorie Requirements Hearing Loss Calculator Blood - Sugar Chart Turmeric Powder - Health Benefits, Uses & Side Effects
This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use
×

PI-103 Effective against Brain Cancer Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests