About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Varied Strains of a Protein can Develop Parkinson's-Related Disorders

by Rishika Gupta on May 14, 2018 at 6:59 PM
Font : A-A+

 Varied Strains of a Protein can Develop Parkinson's-Related Disorders

Different strainS of this protein - α-synuclein (α-syn) may give rise to different Parkinson's-related brain disorders called synucleinopathies, finds a new study. The findings of this study are published in the journal of Biological Psychiatry: Cognitive Neuroscience and Neuroimaging.

"These unexpected findings of the effect of cell type on the generation of different α-syn strains addresses one of the most important mysteries in neurodegenerative disease research," said first author Chao Peng, Ph.D., a research associate in the Center for Neurodegenerative Disease Research (CNDR).

Advertisement


The relationship between cell type and variety of disease protein has not been described for any other neurodegenerative brain disorder. For now, the hope is that one strain associated with multiple system atrophy (MSA) might point the way to new therapies.

What had been known before this Nature study is that in cases of Parkinson's disease without and with dementia, dementia with Lewy bodies, and in about 50 percent of Alzheimer's disease patients, α-syn aggregates in neurons as Lewy bodies (LBs) and Lewy neurites in axons and dendrites. However, in MSA, a rare neurodegenerative disease with widespread effects on the brain and body, α-syn behaves differently. It mainly accumulates as glial cytoplasmic inclusions (GCIs) outside the nucleus in the cytoplasm of oligodendrocytes, a brain structural cell important for myelin production (the insulation material of nerve cell fibers).
Advertisement

The Penn team found that pathological α-syn in GCIs versus LBs are distinct in shape and biology. The α-syn in GCIs forms more compact structures and is about 1,000-fold more potent in seeding and spreading α-syn aggregation in animal models, which is consistent with the highly aggressive nature of MSA.

"Years ago we found that α-syn fibrils act as 'seeds' that induce normal α-syn protein to aggregate into clumps," said senior author Virginia M.-Y. Lee, Ph.D., CNDR director and a professor of Pathology and Laboratory Medicine. "We showed that α-syn fibrils were taken up by healthy neurons, which leads to the formation of Lewy bodies and neurites that impair neuron function, leading to nerve cell death."

Surprisingly, say the researchers, pathological α-syn in GCIs and LBs did not show a preference for a specific cell type in starting pathology when human brain-derived α-syn of each type was used to induce aggregates in cell culture and mouse models.

"This raises the question of why α-syn pathology in Parkinson's disease versus multiple system atrophy shows different potencies, properties, and distributions in neurons versus glial cells," Lee said.

The researchers also found that oligodendrocytes, but not neurons, transform misfolded α-syn into the cytoplasmic strain, which explains the distribution of the two forms by cell type. On the other hand, cytoplasmic α-syn maintains its active seeding function when propagated from neuron to neuron. From this, the researchers concluded that α-syn strains are determined by both misfolded α-syn seeds and cell type.

The team's next steps will be to uncover the underlying molecular mechanism for the differences between the strains. The molecules in oligodendrocytes responsible for the highly potent cytoplasmic strain might suggest viable drug targets for MSA and explain why therapies used to treat other synucleinopathies may not work for MSA patients.

Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
International Day of Persons with Disabilities 2021 - Fighting for Rights in the Post-COVID Era
Effect of Blood Group Type on COVID-19 Risk and Severity
Woman with Rare Spinal Cord Defect from Birth Sues Doctor
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Amyotrophic Lateral Sclerosis (ALS) Magical Millets for Your Health Diet and Nutrition Tips for Athletes Nutrition IQ Acute Coronary Syndrome 

Recommended Reading
New Insights into Parkinsonís Treatment
One of the factors behind nerve cell death in Parkinson's disease identified, unlocking the ......
Brain Device with 25 Years Battery Life
Implanting a brain device for Parkinsons disease to treat diseases with abnormal brain stimulation ....
Existance of Neurological Diseases Spotted by Brainwave Markers
COGNISION system can be used to detect brainwave markers that point to the existence of certain ......
Can Parkinson's Disease Risk be Lowered in IBD Patients?
A new therapy identified helps lower the risk of Parkinson's disease in inflammatory bowel disease ....
Acute Coronary Syndrome
Acute coronary syndrome (ACS) is a sudden, acute life-threatening condition caused by a dramatic red...
Amyotrophic Lateral Sclerosis (ALS)
Find out more about the degenerative disease- Amyotrophic lateral sclerosis....
Diet and Nutrition Tips for Athletes
Athletes can be physically fit by consuming a well balanced nutritious diet, which keeps them mental...
Magical Millets for Your Health
Millets are far more nutrient dense than wheat and rice. They are inexpensive and tasty too. Nutriti...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use