About My Health Careers Internship MedBlogs Contact us

Uses of 'microrockets' and 'micromotors' in Medical Science

by Bidita Debnath on April 15, 2013 at 11:40 PM
Font : A-A+

 Uses of 'microrockets' and 'micromotors' in Medical Science

Efforts to build minute, self-powered robot devices have evoked memories of the 1966 science fiction film Fantastic Voyage, says Joseph Wang, D.Sc., who leads research on the motors.

It featured a miniaturized submarine, which doctors injected into a patient. It then navigated through blood vessels to remove a blood clot in the brain.


An advance in micromotor technology akin to the invention of cars that fuel themselves from the pavement or air, rather than gasoline or batteries, is opening the door to broad new medical and industrial uses for these tiny devices, scientists said. Their update on development of the motors — so small that thousands would fit inside this "o" — was part of the 245th National Meeting & Exposition of the American Chemical Society, the world's largest scientific society, being held here this week.

Fuel and propulsion systems have been a major barrier in moving science fiction closer to practical reality, Wang explained. Some micromotors and even-smaller nanomotors, for instance, have relied on hydrogen peroxide fuel, which could damage body cells. Others have needed complex magnetic or electronic gear to guide their movement.

"We have developed the first self-propelled micromotors and microrockets that use the surrounding natural environment as a source of fuel," Wang said. "The stomach, for instance, has a strongly acid environment that helps digest food. Some of our microrockets use that acid as fuel, producing bubbles of hydrogen gas for thrust and propulsion. The use of biocompatible fuels is attractive for avoiding damage to healthy tissue in the body. We envision that these machines could someday perform microsurgery, clean clogged arteries or transport drugs to the right place in the body. But there are also possible uses in cleaning up oil spills, monitoring industrial processes and in national security."

Wei Gao, a graduate student in Wang's lab, described how the team at the University of California, San Diego, has developed two types of self-propelled vehicles — microrockets made of zinc and micromotors made of aluminum. The tubular zinc micromotor is one of the world's fastest, able to move 100 times its 0.0004-inch length in just one second. That's like a sprinter running 400 miles per hour. The zinc lining is biocompatible. It reacts with the hydrochloric acid in the stomach, which consists of hydrogen and chloride ions. It releases the hydrogen gas as a stream of tiny bubbles, which propel the motor forward. "This rocket would be ideal to deliver drugs or to capture diseased cells in the stomach," said Gao.

Gao also described some of the latest advances in the technology. The newest vehicles are first-of-their-kind aluminum micromotors. One type, which also contains gallium, uses water as a fuel. It splits water to generate hydrogen bubbles, which move the motor. "About 70 percent of the human body is water, so this would be an ideal fuel for vehicles with medical uses, such as microsurgery," said Wang. "They also could have uses in clinical diagnostic tests, in the environment and in security applications."

Another type of aluminum micromotor doesn't have gallium and is the first such motor that can use multiple fuels. "We're really excited about this micromotor," said Gao. "It is our most flexible one to date. For the first time, we've made a micromotor that can use three different fuels — acids, bases and hydrogen peroxide, depending upon its surroundings. Therefore, we can use these motors in many more environments than ever before."

The scientists are working on extending the lifetimes of the vehicles so that they last longer and functionalizing them for specific biomedical applications. They also are exploring commercial partners for realizing real-life applications of this work, said Wang.

Source: Eurekalert

News A-Z
News Category
What's New on Medindia
Goji Berries May Protect Against Age-Related Vision Loss
Tapping — A Proven Self-Applied Stress Intervention
Black Pepper as Preventive Measure Against Omicron
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

Recommended Reading
Role of Brain's Immune Cells During Alzheimer's Disease Progression Studied
The brain's own immune cells, the microglia, surround the plaque deposits in the brain of ......
New Technique Converts Skin Cells to Functional Brain Cells
Case Western Reserve School of Medicine scientists have identified a novel way to convert skin ......
Ability of Intestinal Cells to Destroy Oncoprotein Reduced By Exposure to Space Radiation
An explanation as to why space radiation may increase the risk of colorectal cancer in humans was .....
Mammary Gland Stem Cells "Fished Out" Using A Novel Surface Marker
Stem cells retain the genetic plasticity to self-renew indefinitely as well as develop into cell ......

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2022

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use
open close
I have read and I do accept terms of use - Telemedicine

Advantage Medindia: FREE subscription for 'Personalised Health & Wellness website with consultation' (Value Rs.300/-)