About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Two Brain Networks Influence How We Make Decisions

by Bidita Debnath on February 2, 2017 at 10:43 PM
Font : A-A+

 Two Brain Networks Influence How We Make Decisions

At the Medical Research Council Brain Network Dynamics Unit at the University of Oxford, researchers have pinpointed two distinct mechanisms in the human brain that control the balance between speed and accuracy when making decisions.

Their discovery, published in eLife, sheds new light on the networks that determine how quickly we choose an option, and how much information we need to make that choice. A more detailed understanding of this intricate wiring in the brain holds the key to developing better treatments for neurological disorders such as Parkinson's disease.

Advertisement


The fundamental trade-off between speed and accuracy in decision making has been studied for more than a century, with a number of studies suggesting that the subthalamic nucleus region of the brain plays a key role.

"Previous behavioural studies of decision making do not tell us about the actual events or networks that are responsible for making speed-accuracy adjustments," says senior author Peter Brown, Professor of Experimental Neurology at the University of Oxford. "We wanted to address this by measuring the exact location and timing of electrical activity in the subthalamic nucleus and comparing the results with behavioural data collected while a decision-making task is being performed."
Advertisement

Brown and his team first studied the reaction times of 11 patients with Parkinson's disease and 18 healthy participants, who were each asked to perform a moving-dots task. This required them to decide whether a cloud of moving dots appeared to be moving to the left or the right. The difficulty of the task was varied by changing the number of dots moving in one direction, and the participants were given randomly alternating instructions to perform the task with either speed or accuracy.

The researchers found that participants made much faster decisions when the task was easier - with the dots moving in a single direction - and when instructed to make a quick decision. They also found, in line with previous studies, that participants made significantly more errors during tests where they spent longer making a decision after being instructed to emphasise accuracy.

Using a computational model, they saw that it took longer in the more difficult tests for the brain to accumulate the necessary information to reach a critical threshold and make a decision. When the participants were asked to focus on speed, this threshold was significantly lower than when they focused on accuracy.

"The next step was to determine the activated networks in the brain that control these behavioural modifications and the trade-off between fast and accurate decisions," explains first author and postdoctoral fellow Damian Herz. We measured the electrical activity of groups of nerve cells within the subthalamic nucleus in patients with Parkinson's disease, who had recently been treated with deep brain stimulation. We found two distinct neural networks that differ in the way they are ordered and the way they respond to tasks.

"One network increases the amount of information required before executing a decision and is therefore more likely to be activated when accuracy is important, while the second network tends to lower this threshold, especially when the choice needs to be made quickly."

The findings add to the increasing evidence that the pre-frontal cortex region of the brain contributes to decision making and opens up further interesting avenues to explore.

"We know that changes in activity of one of the sites we identified is also related to movement control," adds Brown. "Close relationships between these neural networks could mean that a common signal is responsible for adjustments in both the speed of decision and of the resulting movement. A better understanding of these mechanisms might make it possible to focus therapeutic interventions on specific neural circuits to improve treatment of neurological disorders in the future."

Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
What's New on Medindia
Alarming Cesarean Section Trends in India - Convenience or Compulsion of Corporate Healthcare
Quiz on Low-Calorie Diet for Diabetes
World Heart Day in 2022- Use Heart for Every Heart
View all
Recommended Reading
News Archive
Date
Category
Advertisement
News Category

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Parkinsons Disease Parkinsons Disease Surgical Treatment Brain Brain Facts Ataxia Language Areas in The Brain Ways to Improve your Intelligence Quotient (IQ) 

Most Popular on Medindia

Nutam (400mg) (Piracetam) Color Blindness Calculator Sinopril (2mg) (Lacidipine) Drug - Food Interactions Post-Nasal Drip Find a Doctor How to Reduce School Bag Weight - Simple Tips Iron Intake Calculator Blood Pressure Calculator Loram (2 mg) (Lorazepam)
This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use
×

Two Brain Networks Influence How We Make Decisions Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests