Medindia LOGIN REGISTER
Medindia
Advertisement

Treatment for Rare Genetic Nerve Disease Advanced by UCLA Stem Cell Researchers

by Kathy Jones on May 12, 2013 at 11:59 PM
 Treatment for Rare Genetic Nerve Disease Advanced by UCLA Stem Cell Researchers

Researchers at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA have used induced pluripotent stem (iPS) cells to advance disease-in-a-dish modeling of a rare genetic disorder, ataxia telangiectasia (A-T). The researchers were led by Dr. Peiyee Lee and Dr. Richard Gatti.

Their discovery shows the positive effects of drugs that may lead to effective new treatments for the neurodegenerative disease. iPS cells are made from patients' skin cells, rather than from embryos, and they can become any type of cells, including brain cells, in the laboratory. The study appears online ahead of print in the journal Nature Communications.

Advertisement

People with A-T begin life with neurological deficits that become devastating through progressive loss of function in a part of the brain called the cerebellum, which leads to severe difficulty with movement and coordination. A-T patients also suffer frequent infections due to their weakened immune systems and have an increased risk for cancer. The disease is caused by lost function in a gene, ATM, that normally repairs damaged DNA in the cells and preserves normal function.

Developing a human neural cell model to understand A-T's neurodegenerative process — and create a platform for testing new treatments — was critical because the disease presents differently in humans and laboratory animals. Scientists commonly use mouse models to study A-T, but mice with the disease do not experience the more debilitating effects that humans do. In mice with A-T, the cerebellum appears normal and they do not exhibit the obvious degeneration seen in the human brain.
Advertisement

Lee and colleagues used iPS cell-derived neural cells developed from skin cells of A-T patients with a specific type of genetic mutation to create a disease-in-a-dish model. In the laboratory, researchers were able to model the characteristics of A-T, such as the cell's lack of ATM protein and its inability to repair DNA damage. The model also allowed the researchers to identify potential new therapeutic drugs, called small molecule read-through (SMRT) compounds, that increase ATM protein activity and improve the model cells' ability to repair damaged DNA.

"A-T patients with no ATM activity have severe disease but patients with some ATM activity do much better," Lee said. "This makes our discovery promising, because even a small increase in the ATM activity induced by the SMRT drug can potentially translate to positive effects for patients, slowing disease progression and hopefully improving their quality of life."

These studies suggest that SMRT compounds may have positive effects on all other cell types in the body, potentially improving A-T patients' immune function and decreasing their susceptibility to cancer.

Additionally, the patient-specific iPS cell-derived neural cells in this study combined with the SMRT compounds can be an invaluable tool for understanding the development and progression of A-T. This iPS cell-neural cell A-T disease model also can be a platform to identify more potent SMRT drugs. The SMRT drugs identified using this model can potentially be applied to most other genetic diseases with the same type of mutations.



Source: Eurekalert
Font : A-A+

Advertisement

Advertisement
Advertisement

Recommended Readings

Latest Genetics & Stem Cells News

Early-Stage Stem Cell Trial for Progressive Multiple Sclerosis
Among MS patients, the stem cells showed a neuroprotective role, guarding nerve cells from further decline.
Human Genetics Unravels Mysteries of Digestive Disorders
New possibilities for research on digestive diseases have been set by complete decoding of the Y chromosome.
World's First CRISPR-Based Gene Therapy for Blood Disorders
UK has given the green light to the world's inaugural gene therapy for sickle-cell disease and thalassemia.
Genotype Linked to Short-Lifespan Affects 1 in 25 People
1 in 25 people had a genotype linked to short lifetime, which includes BRCA2 and LDLR genes, that reduced lifespan by seven years, and six years respectively.
Is Stem Cell Therapy a Breakthrough for Reversing Osteoarthritis?
The study findings help redefine osteoarthritis as a reversible loss of key cartilage stem cells, not just 'wear and tear'."
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Treatment for Rare Genetic Nerve Disease Advanced by UCLA Stem Cell Researchers Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests