Contrary to long-established dogma, the eye can host an active immune response that could both heal injury and contribute to loss of vision.

‘The immune system plays such a major role in many disease states. It's time to learn about its role in fibrotic scarring of the lens in cataract formation.’

The finding came as something of a surprise to senior author Sue Menko, PhD, Professor in the Department of Pathology, Anatomy and Cell Biology at Thomas Jefferson University, in part because she hadn't set out to challenge the scientific dogma in the field. 




Dr. Menko, together with first author Caitlin Logan, MD, PhD, and second author Caitlin Bowen, was looking at a mouse that had been engineered to stop producing a key developmental protein called N-cadherin just as the lens was beginning to form. Not only did they show that N-cadherin was necessary for creating the perfectly clear structure of the lens, they also observed that malformed lenses lacking N-cadherin began to attract immune cells to try to fix the damage.
The immune cells appear to travel to the lens via a web of ligaments that suspends the lens and connects it to the surrounding muscle tissue called the ciliary body, rich with immune-cell-carrying blood vessels. The main function of the ciliary body is to control the shape of the lens and help us focus.
"Understanding that the lens is accessible to both immune protection and overreaction, could change the way we think about a number vision disorders," says Dr. Menko. "The immune system plays such a major role in many disease states. It's time we began to learn about its role in fibrotic scarring of the lens in cataract formation and other diseases."
Source-Eurekalert