About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

The Delicate 'water Molecule Dance' That is Essential for Life

by Hannah Punitha on August 8, 2008 at 3:09 PM
Font : A-A+

 The Delicate 'water Molecule Dance' That is Essential for Life

When bound to proteins, water molecules in our body participate in a carefully choreographed ballet that permits the proteins to fold into their functional, native states. This delicate dance is essential to life. Hence the water fluid in our body has different physical properties from ordinary bulk water.

"Water in our bodies has different physical properties from ordinary bulk water, because of the presence of proteins and other biomolecules. Proteins change the properties of water to perform particular tasks in different parts of our cells," said Martin Gruebele, a William H. and Janet Lycan Professor of Chemistry at the University of Illinois.

Advertisement

Consisting of two hydrogen atoms and one oxygen atom, water molecules are by far the body's largest component, constituting about 75 percent of body volume.

"While it is well known that water plays an important role in the folding process, we usually only look at the motion of the protein," said Gruebele, who also is the director of the U. of I.'s Center for Biophysics and Computational Biology, and a researcher at the Beckman Institute.
Advertisement

"This is the first time we've been able to look at the motion of water molecules during the folding process."

Using a technique called terahertz absorption spectroscopy, Gruebele and his collaborator Martina Havenith at the Ruhr-University Bochum studied the motions of a protein on a picosecond time scale (a picosecond is 1 trillionth of a second).

The technique, which uses ultrashort laser pulses, also allowed the researchers to study the motions of nearby water molecules as the protein folded into its native state.

The researchers present their findings in a paper published July 23 in the online version of the chemistry journal Angewandte Chemie.

Terahertz spectroscopy provides a window on protein-water rearrangements during the folding process, such as breaking protein-water-hydrogen bonds and replacing them with protein-protein-hydrogen bonds, Gruebele said.

The remaking of hydrogen bonds helps organize the structure of a protein.

In tests on ubiquitin, a common protein in cells, the researchers found that water molecules bound to the protein changed to a native-type arrangement much faster than the protein. The water motion helped establish the correct configuration, making it much easier for the protein to fold.

"Water can be viewed as a 'designer fluid' in living cells," Gruebele said.

"Our experiments showed that the volume of active water was about the same size as that of the protein," Gruebele added.

Source: ANI
SPH
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
News Category
What's New on Medindia
Health Benefits of Sea Buckthorn
Contraceptive Pills in Polycystic Ovary Syndrome (PCOS) Curtail Type 2 Diabetes Risk
Mushroom May Help Cut Down the Odds of Developing Depression
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.


Recommended Reading
Waterborne Diseases
Waterborne diseases are communicable diseases caused by diseases causing microorganisms in ......
Total Body Water
Use Total Body Water Calculator to find out your total body water content based various formulas....
Water Melon Juice
The Ayurveda & diet section of medindia gives important facts of watermelon juice, its name in ......

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use