Medindia LOGIN REGISTER
Medindia
Advertisement

Taste Forms the Basis on Which Animals Avoid High Salt Concentrations

by Kathy Jones on February 16, 2013 at 9:14 PM
 Taste Forms the Basis on Which Animals Avoid High Salt Concentrations

Researchers at Columbia University Medical Center have found out how animals used their tongue to detect high concentrations of salt, which is the first step in the development of salt-avoiding behavior in most mammals.

But Charles Zuker, PhD, and colleagues at Columbia University Medical Center have discovered how the tongue detects high concentrations of salt (think seawater levels, not potato chips), the first step in a salt-avoiding behavior common to most mammals.

Advertisement

The findings could serve as a springboard for the development of taste modulators to help control the appetite for a high-salt diet and reduce the ill effects of too much sodium. The findings were published today online in Nature.

The sensation of saltiness is unique among the five basic tastes. Whereas mammals are always attracted to the tastes of sweet and umami, and repelled by sour and bitter, their behavioral response to salt dramatically changes with concentration.
Advertisement

"Salt taste in mammals can trigger two opposing behaviors," said Dr. Charles Zuker, professor in the Departments of Biochemistry & Molecular Biophysics and of Neuroscience at Columbia University College of Physicians & Surgeons. "Mammals are attracted to low concentrations of salt; they will choose a salty solution over a salt-free one. But they will reject highly concentrated salt solutions, even when salt-deprived."

Over the past 15 years, the receptors and other cells on the tongue responsible for detecting sweet, sour, bitter, and umami tastes—as well as low concentrations of salt—have been uncovered largely through the efforts of Dr. Zuker and his collaborator Nicholas Ryba from the National Institute of Dental and Craniofacial Research.

"But we didn't understand what was behind the aversion to high concentrations of salt," said Yuki Oka, a postdoctoral fellow in Dr. Zuker's laboratory and the lead author of the study.

The researchers expected high-salt receptors to reside in cells committed only to detecting high salt. "Over the years our studies have shown that each taste quality—sweet, bitter, sour, umami, and low-salt—is mediated by different cells," Dr. Ryba said. "So we thought there must be different taste receptor cells for high-salt. But unexpectedly, Dr. Oka found high salt is mediated by cells we already knew."

In experiments conducted by Dr. Oka, the researchers found that high salt concentrations activate previously discovered bitter- and sour-sensing cells. When one of these cell types was silenced and made incapable of sending messages to the brain, aversion to high-salt solutions was reduced, but not eliminated. When both cell types were silenced, the mammals completely lost their aversion to high-salt solutions, even showing unrestrained attraction to exceedingly salty solutions equivalent to those of seawater.

For mammals, ingesting high concentrations of seawater can lead to extreme dehydration, kidney failure, and death. With two aversion pathways, Dr. Oka said, animals have a safeguard to make sure that high salt is always aversive.

Now that all the salt pathways have been identified, Dr. Oka said, it may be possible to use that knowledge to make low concentrations of salt taste saltier, to reduce NaCl intake. It also may be possible to make the taste of KCl (potassium chloride), which has fewer long-term health effects than sodium chloride, more appealing to encourage its use as a salt substitute.

Taste Cells Will Lead to Understanding Where Sensations Are in the Brain

Though the commercial implications of the work are clear, the researchers' objective is not to find ways to alter our tastes, but to understand how we perceive the sensory world. How does the detection of high salt oncentrations on the tongue lead to a decision to turn away from a source of water? How can we tell the difference between chocolate cake and pumpkin pie? How do our taste sensations change over time? The answers are in the firing of neurons in the brain.

With the taste receptor cells in hand, the researchers have recently turned to brain imaging, mapping the neurons that receive information from the tongue's taste buds. The map was a surprise. Instead of finding the neurons scattered, as the taste receptor cells on the tongue are, they found discrete hotspots of the brain for each of four tastes: sweet, bitter, umami, and salty (sour has not yet been located).

Ultimately, they hope to understand how the firing of these neurons produces the sensations we call tastes.



Source: Eurekalert
Font : A-A+

Advertisement

Advertisement
Advertisement

Recommended Readings

Latest General Health News

First Human Case of Rare Swine Flu Strain H1N2 Found in UK
Swine influenza A viruses, including subtypes H1N1, H1N2, and H3N2, are prominent among pigs and sporadically transmit to humans.
Unraveling the Mystery Respiratory Illness in US Dogs
The microorganism "is a newly identified potential disease-causing agent, possibly originating from or evolving within the dog's microbiome."
Why Red Wine Cause Headache?
Flavanol naturally present in red wine can compromise the proper metabolism of alcohol and lead to a headache.
Raw Meat Raises Antibiotic-Resistant E.Coli Risk in Dogs
To reduce bacterial risks, pet owners can switch to a non-raw diet or obtain quality raw meat for cooking before feeding dogs.
U.S. Men Die 6 Years Earlier Than Women- A Review on Life Expectancy Gap
Since 2010, the gender gap in life expectancy in the US has increased to six years because of the pandemic, accidents, opioid overdoses, injuries, and suicide.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Taste Forms the Basis on Which Animals Avoid High Salt Concentrations Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests