About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

T-Cell Therapy Targeting Tumor Gene Mutations Could Be a Better Cancer Treatment

by Reshma Anand on February 20, 2016 at 2:53 PM
Font : A-A+

T-Cell Therapy Targeting Tumor Gene Mutations Could Be a Better Cancer Treatment

The body's immune system are equipped with specialized cells that help fight diseases and these cells could also be reliable for fighting cancer, according to a new study.

A Berlin research group led by Wolfgang Uckert, Thomas Blankenstein and Matthias Leisegang has been collaborating with U.S. researcher Hans Schreiber in a project to use immune components called T cells to target mutant proteins produced by cancer cells.

Advertisement


T cells are "special forces" of the immune system that patrol the body and are equipped with T cell receptors molecules. The receptors scan the surfaces of all body cells for protein fragments called antigens. Antigens are produced within cells and are usually derived from pathogens. If their foreign origins are recognized, T cells will kill these cells. Antigens may also arise from abnormal proteins resulting from mutations in the genes of cancer cells, which may also be recognized as "foreign" by T cells.

"Even though T cells migrate into tumors and potentially can recognize their antigens, the defense mechanism seems to fail during the formation of tumors. T cells in the tumors are usually inactive and therapeutically almost useless. But it is possible to obtain fresh T cells from a patient's blood and transfer tumor-specific T cell receptors into them. The transfer of the T cell receptor is carried out using genetically modified and functionally inactivated viruses that can insert their genetic material into millions of T cells. When these modified cells are infused into the patient, they are able to fight the tumor," said Matthias Leisegang.
Advertisement

Hans Schreiber's research team at the University of Chicago analyzed gene therapy with T cell receptors in mice. The scenario mirrored the situation that would be faced in the clinic. First the scientists analyzed the genes of an individual mouse tumor. They identified a mutation that occurred in all regions of the tumor and also found its way to the surface as an antigen. T cells were taken from the mouse, armed with a T cell receptor that would target this antigen, and were then administered to the animal. The cells almost completely destroyed the tumor. However, T cell therapy had to be combined with local radiation to eliminate the tumor in the long term. The results of the study were published in the journal Clinical Cancer Research.

Now, in a publication in the Journal of Clinical Investigation, the Berlin researchers show the importance of preliminary animal studies to ensure the final success of mutation-specific therapies. Even if some mutations appear to be suitable targets for therapy after tests in cell cultures, they can have disappointing results in the real context of a patient's body. The research group of Thomas Blankenstein and Wolfgang Uckert were able to analyze the antigens and clearly distinguish between "good" and "bad" T cell targets by using a humanized mouse model. "This means that we have developed an animal model to test the therapeutic suitability of T cell receptors and antigens, which is an important prerequisite for clinical applications," Leisegang said.

Although the efforts of Matthias Leisegang and his colleagues to train immune cells to fight cancer by targeting mutations were successful in mice, he emphasized that the patient individualized treatment is not yet ready for use in humans. Clinical tests based on similar methods are currently underway, but so far targeting only antigens without mutations. In those cases, the T cells may also attack healthy tissue. Targeting cancer-specific mutations, the researchers say, would cause fewer side effects. But the new method is also much more complex because it has to be individualized for each individual patient. With support from the BIH, the groups are now working with other teams at the MDC and Charité to apply their research to the clinic.



Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
What's New on Medindia
Alarming Cesarean Section Trends in India - Convenience or Compulsion of Corporate Healthcare
Quiz on Low-Calorie Diet for Diabetes
World Heart Day in 2022- Use Heart for Every Heart
View all
Recommended Reading
News Archive
Date
Category
Advertisement
News Category

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
DNA Finger Printing Cancer and Homeopathy Reiki and Pranic Healing Cancer Facts Cancer Tattoos A Body Art Tumor Markers For Cancer Diagnosis and Prognosis Amyotrophic Lateral Sclerosis (ALS) Cystic Fibrosis McArdle Disease 

Most Popular on Medindia

Pregnancy Confirmation Calculator Post-Nasal Drip Find a Doctor Blood - Sugar Chart Sinopril (2mg) (Lacidipine) Drug Side Effects Calculator Selfie Addiction Calculator Sanatogen Blood Donation - Recipients The Essence of Yoga
This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use
×

T-Cell Therapy Targeting Tumor Gene Mutations Could Be a Better Cancer Treatment Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests