About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Surprising New Influence on Cancer Genes Found By Scientists

by Rukmani Krishna on February 28, 2013 at 11:10 PM
Font : A-A+

 Surprising New Influence on Cancer Genes Found By Scientists

Small stretches of DNA in the human genome are known as "pseudogenes." They are called so because, while their sequences are nearly identical to those of various genes, they have long been thought to be non-coding "junk" DNA.

But now, a new study led by scientists at The Scripps Research Institute (TSRI) shows how pseudogenes can regulate the activity of a cancer-related gene called PTEN. The study also shows that pseudogenes can be targeted to control PTEN's activity.

Advertisement

Published in the latest issue of the journal Nature Structural & Molecular Biology, the team's findings suggest a much larger role for pseudogenes than previously thought—a discovery that changes our understanding of the internal landscape of living cells, adding a new layer of complexity to an already crowded topography marked by multiple, overlapping, interacting gene networks.

Understanding how pseudogenes interact and control gene networks in the human body may lead to new ways of addressing diseases tied to problems that arise due to disruptions in these gene networks, said TSRI scientist Kevin Morris, PhD, who led the research in collaboration with scientists at the Karolinska Institute in Stockholm, Sweden, and The University of New South Wales in Sydney, Australia.
Advertisement

"This has improved our knowledge of how genes in cancer are regulated and how we may now be able to control them," Morris said.

Genes and Pseudogenes at Work

The focus of the human genome project, which decoded our entire DNA sequence a decade ago, was largely on genes—the genetic sequences that encode proteins and thus control processes that govern and regulate all biological functions. But these genes are only a small part of the genome. The vast majority of DNA in the human genome is non-coding, meaning that it does not make protein.

In the early days of molecular biology, scientists called these vast stretches of DNA "junk" because of their presumed inactivity. Pseudogenes, which make up vast swaths of non-coding DNA, were considered part of the junk—even though they resembled genes—because they did not code for proteins.

The results from the new study contradict that view by showing these bits of genetic material playing a profound role in controlling the activity of human genes. The control or loss of control of genes can make the difference between healthy and diseased tissue. In cancer, for instance, some genes become more active, while other genes that should normally shut down a cancerous growth become suppressed.

In the new work, Morris and his colleagues showed that pseudogenes can influence the activity of a human gene known as the phosphatase and tensin homolog (PTEN). PTEN has long been implicated in cancer and is categorized as a "tumor suppressor" gene, meaning that it has the ability to arrest the growth of a tumor. But in many forms of cancer, PTEN is shut down, allowing the tumor to grow unchecked.

Intriguing Possibilities

Morris and his colleagues found that pseudogenes sharing sequences in common with PTEN can regulate the gene in two ways—knocking it down by suppressing the "promoter" for the PTEN gene, preventing the gene from being expressed, or soaking up PTEN-targeted regulatory micro-RNAs affecting the PTEN protein after the gene transcripts have been expressed.

Some companies are already looking at pseudogenes such as PTEN as targets of potential new drugs, Morris said, and the new work is a proof of principle that targeting pseudogenes can modulate the growth of cancer cells grown in the laboratory.

The same principle may be applicable to other diseases where the aberrant activity of a normal human gene is in play—or in infectious diseases, as a way of shutting down certain crucial genes belonging to viruses or bacteria.

Morris noted, however, there are many practical issues with controlling pseudogenes. Designing a drug targeting pseudogenes directly would be difficult to administer with current technology, as these drugs would need to be delivered into the exact cells where they are needed without spreading to other, healthy tissues where they could be toxic.

Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
News Category
What's New on Medindia
Guide to Brushing Your Teeth the Right Way
Resting Heart Rate
Is COVID-19 Vaccination during Pregnancy Safe?
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Cancer and Homeopathy Cancer Facts Cancer Tattoos A Body Art Weaver Syndrome Common Lifestyle Habits that Cause Diseases Health Benefits of Dandelion Plant Immune Checkpoint Inhibitors for Cancer Treatment Non-Communicable Diseases 

Recommended Reading
Scientists Develop Nanoparticle Containing Drug That Fights Cancer Genes
Scientists at Penn State College of Medicine have devised a safer and more effective way of ......
Common Lifestyle Habits that Cause Diseases
Cigarette smoking, unhealthy diets, overuse of alcohol, and physical inactivity are some of the most...
Health Benefits of Dandelion Plant
What is dandelion? Dandelion greens are nutrition powerhouses with a wide range of health benefits. ...
Immune Checkpoint Inhibitors for Cancer Treatment
Immune checkpoint inhibitors are promising drugs to treat a variety of cancers and the FDA has appro...
Non-Communicable Diseases
Non-Communicable Diseases (NCDs) are a group of chronic non-infectious diseases which include Cardio...
Tattoos A Body Art
Tattoos are a rage among college students who sport it for the ‘cool dude’ or ‘cool babe’ look...
Weaver Syndrome
Weaver syndrome is a genetic disorder in which children show accelerated bone growth, advanced bone ...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use