About Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Study Shows Why Standard Bipolar Treatment Doesn't Work for Majority of Patients

by Colleen Fleiss on January 5, 2021 at 11:08 PM
Font : A-A+

Study Shows Why Standard Bipolar Treatment Doesn't Work for Majority of Patients

Reduced activation of the LEF1 gene is more common in neurons of bipolar disorder patients who do not respond to lithium, pointing the way to a potential new treatment, said Salk researchers.

A new study led by Salk Professor and President Rusty Gage, which published in the journal Molecular Psychiatry on January 4, 2021, shows that decreased activation of a gene called LEF1 disrupts ordinary neuronal function and promotes hyperexcitability in brain cells--a hallmark of BD.

Advertisement


The work could result in a new drug target for BD as well as a biomarker for lithium nonresponsiveness.

"Only one-third of patients respond to lithium with disappearance of the symptoms," says Renata Santos, co-first author on the study and a Salk research collaborator. "We were interested in the molecular mechanisms behind lithium resistance, what was blocking lithium treatment in nonresponders.
Advertisement

We found that LEF1 was deficient in neurons derived from nonresponders. We were excited to see that it was possible to increase LEF1 and its dependent genes, making it a new target for therapeutic intervention in BD."

The study builds on the team's earlier findings, which reported that the neurons of people with BD who don't respond to lithium are larger, fire differently (are more easily stimulated, or hyperexcitable), and have increased potassium flow.

Subjects in the team's current study included lithium responders, nonresponders and people without BD (controls).

Using stem-cell methods, the researchers grew neurons from the subjects' blood cells and compared the genetic disposition and behavior of the neurons for the three groups.

They looked at many genes across the board, but LEF1 stood out as one of the most different in nonresponders. Normally, LEF1 plays a decisive role in neuronal function by pairing with another protein called beta-catenin.

The pairing typically activates other genes that regulate the level of activity in the neuron. In control or responding neurons, lithium enables beta-catenin to pair with LEF1. But in nonresponders, lithium is ineffective because LEF1 levels are too low for the pairing to occur, so there's no regulation of cell activity.

When the team administered valproic acid, a treatment often used for nonresponders, measurements showed increased levels of LEF1 and activation of the other relevant genes.

And when the team silenced the LEF1 gene in control neurons, they found that the related genes were not activated. Together, these results indicate the critical role LEF1 plays in controlling neuronal hyperexcitability.

"When we silenced the LEF1 gene, the neurons became hyperexcitable," says Shani Stern, co-first author on the study and a Salk visiting scientist. "And when we used valproic acid, expression of LEF1 increased, and we lowered the hyperexcitability. That shows there is a causative relationship, and that's why we think LEF1 may be a possible target for drug therapy."

LEF1 may also help researchers develop a screening test for responsiveness. Currently, clinicians can only determine whether a patient is responsive to lithium by administering a complete course of treatment, which could take a year.

Now, subdued activity of LEF1 may be an indicator that a patient won't respond to lithium, enabling a faster and more efficient way to approach therapy.

Team members already contemplating next steps. These include looking at other cell types, such as astrocytes and GABAergic neurons, to understand the bipolar neural network as a whole; identifying other genes that could be beneficial for nonresponders; and finding other drugs that can activate LEF1.

"LEF1 works in various ways in different parts of the body, so you can't just turn it on everywhere," says Carol Marchetto, co-corresponding author and Salk research collaborator. "You want to be more specific, either activating LEF1 on a targeted basis or activating downstream genes that are relevant for lithium nonresponsiveness."

Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
What's New on Medindia
Prevent Hacking of Medical Devices: FDA Sounds Alarm
Black Water: Benefits and Uses
World Hypertension Day 2022 - Measure Blood Pressure Accurately, Control It, Live Longer!
View all
News Archive
Date
Category
Advertisement
News Category

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Bipolar Disorder 

Most Popular on Medindia

Accident and Trauma Care Diaphragmatic Hernia Indian Medical Journals Calculate Ideal Weight for Infants Blood Donation - Recipients Nutam (400mg) (Piracetam) Drug Side Effects Calculator Find a Hospital Hearing Loss Calculator Noscaphene (Noscapine)

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2022

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use