About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Study Maps the Proteome of the Human Heart

by Anjali Aryamvally on November 15, 2017 at 5:35 PM
Font : A-A+

Study Maps the Proteome of the Human Heart

More than 10,000 proteins work efficiently to help the heart beat about two billion times during a lifetime. A research team from the Max Planck Institute of Biochemistry (MPIB) and the German Heart Centre at the Technical University of Munich (TUM) have determined which and how many of these individual proteins are present in each type of cardiac cell. This gives us the first atlas of the healthy human heart, known as the cardiac proteome. The atlas will make it easier to identify differences between healthy and diseased hearts in future.

Proteins are the molecular machines of cells, in which they perform a range of functions. They are produced by the cells based on blueprints stored in their DNA. Changes occurring at the DNA or protein level can lead to disorders. For such changes to be recognized as underlying causes of heart disease, it is important to know precisely which proteins are present in the healthy heart and in what quantities.

Advertisement


Protein map of the heart

The first such protein atlas of the heart was recently published in Nature Communications by a research team from Munich. The scientists determined the protein profile of cells in all the regions of the heart, such as heart valves, cardiac chambers and major blood vessels. In addition, they investigated the protein composition in three different cell types of the heart: cardiac fibroblasts, smooth muscle cells and endothelial cells. In this way, the researchers were able to map the distribution of proteins in the various regions of the heart. Using mass spectrometry, they identified nearly 11,000 different proteins throughout the heart.
Advertisement

Previous studies had focused for the most part only on individual cell types, or they used tissue from diseased hearts. "This approach has two problems," says Sophia Doll of the MPIB and lead author of the study. "First, the results did not give a full picture of the heart across all its regions and tissues; and second, comparative data on healthy hearts were often missing. Our study has eliminated both problems. Now the data can be used as a reference for future studies."

"Looking at the protein atlas of the human heart, you can see that all healthy hearts work in a very similar manner. We measured similar protein compositions in all the regions with few differences between them," says Sophia Doll. We were also surprised to find that the right and left halves of the heart are similar, despite having quite different functions: the right half pumps oxygen-poor blood to the lungs, while the left half pumps oxygen-rich blood from the lungs to the body.

Sick vs healthy: identifying differences

In the next step, the team wanted to test whether the data from healthy hearts could serve as a control for detecting changes in diseased hearts. They compared their values with the cardiac proteomes of patients with atrial fibrillation, a very common rhythm disorder of the heart. The results indeed provided initial clues as to the cause of the disease. The tissue of the diseased hearts was most different in proteins responsible for supplying energy to the cells.

The comparison provided yet another interesting finding: Although the proteins involved in energy metabolism were changed in all the patients, those changes differed between individuals. "These findings show us how important personalized medicine is. Although all the patients had very similar symptoms, we see from the data that a different molecular dysfunction was responsible in each case. We need to learn to recognize and treat such individual differences - especially in cardiac medicine," says Adjunct Teaching Professor Dr. Markus Krane, Deputy Director of the Department of Cardiovascular Surgery of the German Heart Centre Munich at TUM.

Nearly 11,000 proteins in less than two days

Together with his colleagues at the Department of Cardiovascular Surgery (Director: Professor Rüdiger Lange), Markus Krane has collected more than 150 tissue samples from over 60 cardiac operations and forensic samples. Using elaborate cell culture methods, they were able to extract the various cell types from them. This large amount of cardiac material was a crucial factor for studying the individual heart regions so precisely. Professor Matthias Mann, head of the Proteomics and Signal Transduction Group at the MPIB, and his team carried out extensive mass spectrometric measurements. Thanks to advances in mass spectrometry and sample processing, the researchers are lighting the way towards personalized medicine.

The team at MPIB attaches great importance to precise, repeatable and fast analytical methods. They have improved the measuring technique to the extent that an entire heart region can now be determined in less than two days - twice as fast as before. This is crucial, especially for potential use on patients.



Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
Black Tea Protects against Blood Pressure and Heart Diseases
Green Mediterranean Diet may Help Repair Age-Related Brain Damages
Cervical Cancer Awareness Month 2022
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Heart Healthy Heart Statins Mitral Valve Prolapse Aortic Valve Stenosis Pericarditis 

Recommended Reading
Benefits of Proteome Analysis for Detection of Diabetic Nephropathy Remains Unclear
Proteome analysis is a new diagnostic method in which the concentration of several biomarkers in ......
Cardiac Cells With Gold Nanofibers Prove Heart's Best Friend is Gold!
Scientists in Israel have integrated cardiac cells with gold nanofibers to form functional ......
Link Between Heart and Blood Cells During Early Development
Endoglin is a critical factor in determining the fate of early undifferentiated cells during ......
Scientists Identify Protein That Helps Heart to Continue Beating into Old Age
Vinculin could be used to treat and extend lives of patients afflicted by heart failure and helps .....
Aortic Valve Stenosis
Aortic valve Stenosis is an abnormal narrowing of the c valve. Symptoms include angina, and that of ...
Mitral Valve Prolapse
Mitral Valve Prolapse is a relatively common condition and causes leakage of blood through the valve...
Pericarditis
Pericarditis occurs when the pericardium gets inflamed. Pericarditis is characterized by severe ches...
Statins
Statins are new wonder drugs that are proving to be efficacious, not merely in relieving symptoms bu...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2022

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use
open close
CONSULT A DOCTOR
I have read and I do accept terms of use - Telemedicine

Advantage Medindia: FREE subscription for 'Personalised Health & Wellness website with consultation' (Value Rs.300/-)