About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Stem Cells in the Aging Brain of Mice Rejuvenated

by Colleen Fleiss on March 4, 2019 at 9:24 AM
Font : A-A+

Stem Cells in the Aging Brain of Mice Rejuvenated

Stem cells in the brain of aging mice rejuvenated by scientists from the Luxembourg Centre for Systems Biomedicine (LCSB) of the University of Luxembourg and from the German Cancer Research Center (DKFZ).

The researchers expect that their approach will provide fresh impetus in regenerative medicine and facilitate the development of stem cell therapies.

Advertisement


Their results were published today in the journal Cell (DOI:

https://doi.org/10.1016/j.cell.2019.01.040). All cells making up our organs originate from stem cells. They divide and the resulting cells develop into specific tissue cells, forming the brain, lungs or bone marrow. With age, however, the stem cells of living organisms lose their ability to proliferate. Many of them lapse into a permanent state of quiescence.
Advertisement

In order to create as accurate as possible computational models of stem cell behaviour, the LCSB's Computational Biology Group led by Prof. Antonio del Sol applied a novel approach. "Stem cells live in a niche where they constantly interact with other cells and extra-cellular components. It is extremely difficult to model such a plethora of complex molecular interactions on the computer. So we shifted perspective. We stopped thinking about what external factors were affecting the stem cells, and started thinking about what the internal state of a stem cell would be like in its precisely defined niche."

The novel approach led to in a new computational model developed by Dr. Srikanth Ravichandran of the Computational Biology Group: "Our model can determine which proteins are responsible for the functional state of a given stem cell in its niche - meaning whether it will divide or remain in a state of quiescence. Our model relies on the information about which genes are being transcribed. Modern cell biology technologies enable profiling of gene expression at single cell resolution."

It was previously unknown why most of the stem cells in the brain of old mice remain in a state of quiescence. From their computational model, the researchers at the LCSB identified a molecule called sFRP5 that keeps the neuronal stem cells inactive in old mice, and prevents proliferation by blocking the Wnt pathway crucial for cell differentiation.

A rejuvenation for cells

Then the long-standing expertise in neural stem cells of the collaborators at the German Cancer Research Center (DKFZ) came in: Studying stem cells first in a dish and then later directly in mice, they could experimentally validate the computational prediction. When neutralising the action of sFRP5, the quiescent stem cells did indeed start proliferating more actively. Thus, they were available again to be recruited for the regeneration processes in the aging brain.

"With the deactivation of sFRP5, the cells undergo a kind of rejuvenation," del Sol says: "As a result, the ratio of active to dormant stem cells in the brain of old mice becomes almost as favourable as in young animals."

"Our results constitute an important step towards the implementation of stem cell-based therapies, for instance for neurodegenerative diseases," Antonio del Sol says. "We were able to show that, with computational models, it is possible to identify the essential features that are characteristic of a specific state of stem cells." This approach is not limited to studying the brain. It can also be used to model stem cells of other organs in the body. "The hope is that this will open avenues for regenerative medicine," says del Sol.

Source: Eurekalert
Advertisement

Advertisement
Advertisement

Recommended Reading

Latest Genetics & Stem Cells News

A Ray of Hope: Adrenal Hyperplasia may Get a Cure Soon
Scientists have developed the first humanized mouse model for a rare hereditary condition.
Placenta Joins the Brain in Determining Genetic Risk of Schizophrenia
A recent study discovered that the placenta, rather than only the brain, is crucial in determining the genetic risk of schizophrenia.
Scientists Discover Gene Responsible for Severe Facial Defects
FOXI3 gene was found to be involved in Goldenhar syndrome, one form of developmental disorder, revealed research.
Beyond the Blueprint: Understanding the Role of Epigenetics
Contrary to previous beliefs, genes may not be fixed and can be influenced by environmental factors and lifestyle choices, according to modern scientific research.
Gene Therapy Shows Promise in Inherited Eye Disease Trials
Gene therapy successfully tested on dogs with inherited eye disease is now poised for clinical use in humans.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Stem Cells in the Aging Brain of Mice Rejuvenated Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests