About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Stem Cell Discovery may Pave the Way for Novel Treatments

by Savitha C Muppala on May 3, 2013 at 11:20 PM
Font : A-A+

 Stem Cell Discovery may Pave the Way for Novel Treatments

Scientists have made a fundamental discovery about how the properties of embryonic stem cells are controlled.

The study, which focuses on the process by which these cells renew and increase in number, could help research to find new treatments.

Advertisement

Researchers have found that a protein, which switches on genes to allow embryonic stem cells to self-renew, works better when the natural occurring level of the protein is reduced.

It was previously thought that once levels of this protein - called Oct 4 - were reduced the numbers of new stem cells being produced would also fall.
Advertisement

The finding will inform stem cell research, which is looking to find treatments for conditions including Parkinson's, motor neurone, liver and heart disease.

During embryonic development, cells that have the capacity to become any cell type in the body - called pluripotent stem cells - can either renew themselves by multiplying in number or differentiate to become cells found in different parts of the body, for instance skin or liver.

This need for pluripotent cells to increase in number is important so that there is a sufficient supply of them to be differentiated into other cell types.

Scientists at the Medical Research Council Centre for Regenerative Medicine at the University of Edinburgh found that when there were lower levels of Oct 4, the protein bound much more tightly to key parts of DNA in cells.

The strong attraction of Oct 4 to these sections of DNA enabled the efficient switching on of key genes that caused pluripotent stem cells to renew.

The findings could help to improve the way in which stem cells are cultured in the laboratory, providing a better understanding of the processes needed for cells to divide and multiply or to generate different cell types.

The study, published in the journal Cell Stem Cell, was funded by the Medical Research Council, the Wellcome Trust, the Biotechnology and Biological Sciences Research Council and the Human Frontier Science Programme

Professor Ian Chambers, of the MRC Centre for Regenerative Medicine at the University, who led the study, said: "What we found was a complete surprise, as we thought that when levels of this key protein were reduced the numbers of pluripotent stem cells being generated would also fall. Instead, it appears that when the levels of Oct 4 are lower, the balance is tipped in favour of self-renewal over stem cell differentiation."

Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
Turmeric: Magic Ingredient to Keep you Healthy in Winter
Top 7 Benefits of Good Oral Hygiene
Healthy and Safer Thanksgiving 2021
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Stem Cells - Cord Blood Stem Cells - Fundamentals Parkinsons Disease Surgical Treatment Genetics and Stem Cells Bone Marrow Transplantation Tissue Engineering and Regenerative Medicine Stem Cells 

Recommended Reading
Stem Cells - Cord Blood
Encyclopedia section of medindia gives general info about Cord Blood...
Bone Marrow Aspiration and Biopsy
Bone marrow biopsy and aspiration is the removal of some bone marrow tissue for diagnosis and ......
Stem Cells - Fundamentals
Encyclopedia section of medindia gives general info about Stem Cells...
Chronic Lymphocytic Leukemia
Chronic Lymphocytic Leukemia (CLL) is one of the most common types of adult leukemia and is ......
Bone Marrow Transplantation
Preferred Term is Hematopoietic stem cell transplantation. In this stem cell from bone marrow are in...
Tissue Engineering and Regenerative Medicine
This new field is an amalgamation of biology, medicine and engineering, and is believed to have mind...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use