The way in which neuron interaction in the brain reinforces behaviors has been detailed by scientists.

Thought to be a key component of learning, prediction error was long believed to be the product of dopamine neurons firing in response to an unexpected "reward," thus reinforcing the behaviour that led to the reward.
But Uchida and colleagues from Harvard and Beth Israel Deaconess Medical Center reported that reward prediction error is actually the product of a complex interplay between two classes of neurons - one that relies on dopamine and an inhibitory class of neuron that uses the neurotransmitter GABA.
"Until now, no one knew how these GABA neurons were involved in the reward and punishment cycle," Uchida said.
"What we believe is happening is that they are inhibiting the dopamine neurons, so the two are working together to make the reward error computation."
Before Uchida and his team could prove that GABA neurons are involved in the computation, however, they had to be sure what type of cells they were observing.
Advertisement
The results, Uchida said, showed that while firing of dopamine neurons signalled reward prediction error, firing of GABA neurons signalled an expected reward. Taken together, GABA neurons help dopamine neurons calculate reward prediction error.
Advertisement
"What happens with drug abuse is that many drugs, such as opioids and cannabinoids, target the GABA neurons," he said.
"What we are hypothesizing is that, by inhibiting those GABA neurons, you can lose this feedback cycle, so you keep getting reinforcing signals from the dopamine neurons.
"This is a new way of thinking about addiction in general. Based on this theory, I believe you may be able to develop new theories or treatments for addiction," he added.
The study has been recently published in the journal Nature.
Source-ANI