
Neurons that are responsible for sending the smell information to the brain tend to adapt according to the smell, finds a new study.
Our noses may be able to adapt themselves to tell the brain, as efficiently as possible, about the most typical smells in our environment, suggests new research published in eLife.
Advertisement
‘The point highlighted in the study could also explain how decreases in the number of neurons in the nose over a lifetime affect our sense of smell as we age.’
Tweet it Now
The findings contribute to our understanding of how and why the mammalian nose adapts to smells. They could also help us understand how decreases in the number of neurons in the nose over a lifetime affect our sense of smell as we age.
The nose senses smell when molecules drift from nearby objects and activate specialized cells called receptor neurons. In the noses of mice, there are about 10 million receptor neurons which are split into over 1,000 types that each respond differently depending on what molecules they detect. Each receptor neuron is activated by many different smells, and each smell activates many different types of receptors. This means that to understand a smell; the brain needs to read the overall pattern of activation, or 'coding,' across the different receptor types.
"Some types of receptor neurons in the nose are used more often than others, depending on the animal's species," says lead author Tiberiu Tesileanu, Associate Research Scientist in the neuroscience group at the Center for Computational Biology at the Flatiron Institute, US. "Recent experiments have also shown that the way different receptor types are used can change when animals are exposed to different smells. In our current study, we set out to explain these findings and build a model that can predict the observed biases in how receptors are used."
Tesileanu and his team, Simona Cocco and Remi Monasson from France, and Vijay Balasubramanian, US, built a model for the distribution of receptor types. The model assumes that the nose can adapt itself to tell the brain, in the most efficient way possible, about common smells in our surroundings. "For instance, the receptor types activated by variable smells are important because they convey a lot of information to the brain about this variability, and are more abundant in the nose because of this," Tesileanu explains. "To our knowledge, this is the first time that such 'efficient coding' ideas have been applied to explain patterns in the use of receptor neurons by the nose."
He adds that theoretical and experimental scientists will need to do more work to measure the kinds of smells that are typical in our environments, and how human receptor neurons detect them.
Additionally, given the amount of information available regarding the relationship between receptors and natural odor statistics, further experiments could be designed that change the environment in specified ways and then measure the change in the number of receptor neurons in the nose. "Comparing the results of these experiments to the changes predicted by our model would provide a strong test of how well these neurons take information to the brain when they first detect a new smell," concludes senior author Vijay Balasubramanian, Cathy and Marc Lasry Professor at the University of Pennsylvania, US.
Source: Eurekalert
Advertisement
"Some types of receptor neurons in the nose are used more often than others, depending on the animal's species," says lead author Tiberiu Tesileanu, Associate Research Scientist in the neuroscience group at the Center for Computational Biology at the Flatiron Institute, US. "Recent experiments have also shown that the way different receptor types are used can change when animals are exposed to different smells. In our current study, we set out to explain these findings and build a model that can predict the observed biases in how receptors are used."
Tesileanu and his team, Simona Cocco and Remi Monasson from France, and Vijay Balasubramanian, US, built a model for the distribution of receptor types. The model assumes that the nose can adapt itself to tell the brain, in the most efficient way possible, about common smells in our surroundings. "For instance, the receptor types activated by variable smells are important because they convey a lot of information to the brain about this variability, and are more abundant in the nose because of this," Tesileanu explains. "To our knowledge, this is the first time that such 'efficient coding' ideas have been applied to explain patterns in the use of receptor neurons by the nose."
He adds that theoretical and experimental scientists will need to do more work to measure the kinds of smells that are typical in our environments, and how human receptor neurons detect them.
Additionally, given the amount of information available regarding the relationship between receptors and natural odor statistics, further experiments could be designed that change the environment in specified ways and then measure the change in the number of receptor neurons in the nose. "Comparing the results of these experiments to the changes predicted by our model would provide a strong test of how well these neurons take information to the brain when they first detect a new smell," concludes senior author Vijay Balasubramanian, Cathy and Marc Lasry Professor at the University of Pennsylvania, US.
Source: Eurekalert
Advertisement
Advertisement
|
Advertisement
Recommended Readings
Latest Research News

Cerebrospinal fluid (CSF) leaks are detected in approximately 1-3% of adults who have experienced a traumatic brain injury.

The optogenetic activation of hippocampal astrocytes can be viewed as a novel therapeutic avenue for addressing Alzheimer's disease.

In Alzheimer's disease condition, the control and adjustment of ABCA7 levels in response to inflammation and the decrease in the availability of cholesterol.

Atopic dermatitis (AD) and inflammatory bowel disease (IBD) can lead to alterations in the microbiome, and disruptions in the skin and gut barrier.

Gaining insights into mortality risks among vitiligo patients will enhance patient counseling, healthcare monitoring, and overall patient management strategies.