Antibiotic resistance will lead to 10 million deaths per year by 2050, surpassing cancer as a source of human mortality, predicts an influential report from the O'Neill Commission. Small DNA molecules known as plasmids are one of the key culprits in spreading the major global health threat of antibiotic resistance, revealed a new study led by scientists at the University of Oxford.
‘Small DNA molecules known as plasmids are one of the key culprits in spreading the major global health threat of antibiotic resistance.’
Using a novel experimental model, the international team of
researchers show that plasmids, which live inside bacteria and are known
to be a vehicle for transferring antibiotic resistance genes, can
accelerate the evolution of new forms of resistance - making them more
important to the process than previously thought.The study is published in the journal Nature Ecology and Evolution.
Senior author Professor Craig MacLean, a Wellcome Trust Research Fellow in Oxford's Department of Zoology, said, "The discovery of antibiotics revolutionized medicine by making it much simpler to treat bacterial infections, and this had a big impact on human health and longevity. For example, the use of penicillin led to a 90% decrease in mortality caused by some forms of pneumonia. Unfortunately, few new antibiotics have been discovered over the last 30 years, and resistance to existing antibiotics has spread steadily because antibiotics are used heavily in medicine. This is leading to a crisis in medicine, as we have lost the ability to treat bacterial infections that can have life-threatening consequences."
Professor MacLean said, "The spread of resistance genes in bacterial populations is driven by simple, Darwinian selection: during antibiotic treatment, bacteria with resistance genes have a higher reproductive rate than sensitive bacteria, and, as a result, the use of antibiotics causes the spread of resistance genes."
"Many of the most important resistance genes are found on plasmids, which are small, circular DNA molecules that live inside bacteria. Plasmids are capable of moving between bacteria and are usually thought of as being important "vehicles" that transfer resistance genes between bacteria."
Advertisement
"These findings demonstrate a new role for plasmids in antibiotic resistance and evolutionary innovation, and they highlight the threat posed by plasmids to public health."
Advertisement
Source-Eurekalert